INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper ieft-hand cormner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

TTMT

UliVAL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TEXspec:
A Computer Aided Software Engineering Tool
for Scientific and Mathematical Applications

By
Stephen E. Oliver

A Practicum Report
Submitted to the Faculty of Graduate Studies, University of Manitoba
in partial fulfillment of the requirements

for the Degree of

Master of Mathematical, Computational and Statistical Sciences

Institute of Industrial Mathematical Sciences
University of Manitoba

Winnipeg, Manitoba

© Stephen E. Oliver, 2001

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i+l

Your Sle Votre rélérence

Our e Notre rifédrence

L’auteur a accordé une licence non
exclusive permettant a la

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Straet 395, rue Wellington
Ottawa ON K14 ON4 Ottawa ON K1A ON4
Canada Canada
The author has granted a non-
exclusive licence allowing the
National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-62813-2

Canadi

bbb

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommended to the Faculty of Graduate
Studies for acceptance, the Master’s Practicum entitled:

TEXspec: A Computer Aided Software Engineering Tool for Scientific and
Muathematical Applications

submitted by
Mr. Stephen E. Oliver

in partial fulfillment of the requirements for the degree of
Master of Mathematical, Computational and Statistical Sciences (MMCSS)

>— :
S /Y |
Dr. S. A. Ehikidya, Co-Advisor Dr. M. Laucd

Computer Science

4/

M;{i' . H Andres, Co-Advisor
AECL AECL

Computer Scienc

Date of Oral Examination: July 10, 2001.
The Practicum Examining Committee certifies that the practicum (and oral examination) is:

Approved
(Approved or Not Approved)
22—

Foey— O L=

Dr. S. A.Téhik{oya,rCo-Advisor Dr. M. Laucht

Computer Science

SA/a

Mr/f . H Andres, Co-Advisor
AECL

%Eessc? L E. Browstar
,//“c;zair of MMCSS Oral Examination

(The signature of the Chair does not necessarily signify that the Chair has read the entire thesis.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

kkkkk

COPYRIGHT PERMISSION

TEXspec: A COMPUTER AIDED SOFTWARE ENGINEERING TOOL FOR SCIENTIFIC AND
MATHEMATICAL APPLICATIONS

BY

STEPHEN E. OLIVER

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba iz partial fulfillment of the requirement of the degree
of

MASTER OF MATHEMATICAL, COMPUTATIONAL AND STATISTICAL SCIENCES

STEPHEN E. OLIVER © 2001

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfiims Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and
copied as permitted by copyright laws or with express written authorization from the copyright
owner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This report discusses the development of the TeXspec Computer Aided Software Engineering (CASE) tool,
which assists with the development and documentation of software in an environment where software quality
is closely monitored, perhaps by independent regulators. The tool can assist in the development of a broad
range of software, but is targeted at the software that implements mathematical models.

TeXspec generates requirements specifications, design specifications and compilable code in a structured

form while ensuring consistency between products.

The original application of TEXspec was to assist developers of software modeling a repository for Canada’s
high level nuclear waste to achive compliance with a quality assurance standard specified by goverment

regulators.

This report details the form of documentation products produced by TgXspec and all required inputs. It
discusses the processing that TgXspec uses to convert input into final products. The method of ensuring
consistency between products is reviewed. Instruction is provided for operating TgXspec using a graphical
user interface. The significance of the work is discussed and directions for future development are suggested.

Some of the requirements of TpXspec are continuing to evolve. As such, the development is of necessity of a
prototype, or spiral model, nature. This report acts as a status report on the development of TEXspec and

provides a reference for both users and programmers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

The author acknowledges the guidance, patience and funding provided by Ontario Power Generation sup-
porting the development of the TEXspec CASE tool. Paul Gierszewski has acted as project officer providing
valuable feedback and original ideas.

Many TEXspec documentation products have been reviewed by Ted Melnyk and Chuck Kitson. Their
feedback provided valuable input to the development process.

Many of the innovative concepts implemented by the TEXspec system, including the separation of content
from format of documentation, originate with Terry Andres, who co-supervised TEXspec development. Some
of these concepts were researched initially by Dennis LeNeveu, whose Fortran program TgXdef inspired
TrXspec.

Dr. Sylvanus Ehikioya served as co-supervisor at the University of Manitoba. He has responded to an

unknown path to be travelled under tight time constraints in an effective and helpful manner.

The patience and support of Atomic Energy of Canada Ltd. management, in the persons of Alf Wikjord
and Peter Sargent has been crucial to the development of TEXspec. The unusual employment situation as

the research site in Pinawa is wound down has been a challenge to everyone invoived.

The administration at the University of Manitoba and the Institute of Industrial Mathematical Sciences
(IIMS) have reacted to the peculiar circumstances in Pinawa in a highly flexible and patient manner. Pro-
fessor John Brewster directs the [IMS and has led the way.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction

I.I Problem Definition ¢ o it i e e e e e e e e e e e e

1.6

L7

L1l

.12

1.1.3

.14

Commercial Toals i i it e e e e e e e e e e e e e e e e e

Yourdon/DeMarco Methodology

Design Specifications - - . . o it e e e e

Experience with Software Quality Control

Objectiveof the Study i it e e e e e e

Significanceof the Study L e

LImitations v i i it e

Related Work i i e i e et e et e e e et e e e

NOLALIOMS o o it e e e e e e e e e e e e e e e e e e

Organizationof the Report

2 Specification and Design

21 TheTgXspecCASETool i

22

211

2.1.2

213

2.14

Requirements Specification for TEXspeco oo oL

Application Shared Componentst

221

Requirements Data Dictionar»

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222 DesignDataDictionary e 15

223 Dictionary Listing 17
224 Equations e e et e 18

2.3 Applicaticn Composite Componentst eenennnn. 20
23.1 DataFlowDiagrams ittt ittt e e 20
2.3.2 Process Specifications (Mini-Specs) L. 25
233 DesignSpecifications e e 27
234 StructureCharts 13
235 Manuals e 36

3 Graphical User Interface 37
3.1 Architecture. e i e 37
3.2 Configurationand theSearch List enrnen.. 38
3.3 Requirements Data Dictionary 39
34 DesignDataDictionaryttt e e e i1
3.5 Dictionary Listing L e e 41
3.6 Process Specifications (Mini-specs) i it 42
3.7 DataFlowDiagramst 43
3.8 DesignSpecifications e e e e e 45
39 StructureCharts i i 48
3.10 Manualsand Equations e e 49
3.11 Java —~ PerlInterface 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Conclusions

4.1 Maintenance and Future Development

A Sample Data Flow Diagram

B Sample Design Specification
Bl QUIPUL . . .ttt ittt e e e et et e e

B2 Input. . . .o e e e e e e e e e e

C Sample PERL Script

D Sample Java Module (GUI)

E Installation
E.l1 PrerequisiteSoftware i

| 0 D = < U

EL3 Nowebttt it it i e e e e e e e e e e e e e e e e e
E.1.4 JAVA Runtime Environment« ..ttt it e eeee e

E.2 TgXspec Specific Installation

Ei

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

32

54

56

56

68

(44

83

1 Introduction

The Deep Geologic Repository Technology Program (DGRTP), administered by Ontario Power Generation
(OPG) , is charged with developing technology to deal with Canada’s high level nuclear waste. Atomic Energy
of Canada Ltd (AECL), as a major contractor to the DGRTP, has accumulated considerable experience
developing computer programs to model a deep geologic repository for used fuel (8, 9]. These programs
require software of demonstrably high quality to support results presented to the Canadian Nuclear Safety
Commission (CNSC) and the public.

In 1999 the Canadian Standards Association (CSA) adopted a standard (CSA N286.7) [4] for the development
of nuclear safety related computer programs, a scope that included many DGRTP models. While the
software development process used previously was considered robust, it required refinement in order to

achieve compliance with the standard.

The TgXspec project seeks to address the issue of compliance with the CSA standard in a general ay. The
objective is to develop a tool to support a compliant software development procedure while imposing a min-
imum of additional overhead. The tool must support the use of diagrams and/or graphics and mathematical
notation. While TgXspec is optimised to meet the particular requirements associated with modeling the
disposal of Canada’s nuclear fuel waste, it is hoped that TEXspec will find more general usage.

1.1 Problem Definition

The principles of the CSA N286 standards require that

o All software products be subject to a review by qualified staff,
o Genealogy of products be preserved and

e Ownership of products be clearly defined.

To adhere to these principles, products must be clearly delineated and controlled. Where multiple products
share common components, this can become difficult to achieve. For example, the same mathematical equa-
tion might appear in the theory manual, requirements specification and design documentation. The equation
may have been developed by one author, the requirement specification by another and the design documen-
tation by someone else. Tracking this relationship requires that the equation be maintained separately from
the products that reference it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The requirement to document the INROC {16, 17] computer program in a CSA N286.7 compliant manner
has led to the development of the TgXspec Computer Aided Software Engineering (CASE) tool. TgXspec
implements support for software development methodologies used in the development of INROC documenta-
tion, including requirements specification, design description and manuals. TgXspec is designed to allow for
enhancements handling other software development products outlined in CSA N286.7, and may be expanded
to include other methodologies (including object oriented approaches). It is intended to be sufficiently flexible

to permit enhancements to include other phases of the software development life cycle.

1.1.1 Commercial Tools

Several commercial CASE tools have been examined, including DecDesign[6}, Graphical Designer[1}, Software
Through Pictures(11, 27|, and Teamwork{3]. Each of the examined tools was found to be deficient in one or

more critical areas:

e Lack of support for scientific and mathematical notations. The nature of the models demands that
mathematical notations (e.g., A:(t) = [[F/¥(r)]dr) be permitted in specifications, including
diagrams.

o Insufficient accountability. The principle of ownership and accountability for products is not strictly
enforced. While a record of who updated products is often kept, the process control is often inadequate.
For example, anyone who shares a data dictionary might be permitted to update any entry without
regard to individual ownership of particular entries.

¢ Assembling large products from smaller components is not adequately supported. In the experience
accumulated with the INROC program and it’s predecessors (18], many software defects were found to
be the result of transcription errors between products.

o [nsufficient consistency checking between products.

1.1.2 Yourdon/DeMarco Methadology

TEXspec is based on the Yourdon/DeMarco structured analysis methodology (5, 30 for software development.

Many models have, to date, been described using a modified Yourdon/DeMarco methodology {15]. Although
00 methods would perhaps be more appropriate for some models, priority is given to the more common
structured analysis methodology. Products associated with this methodology are:

¢ Data flow diagrams (DFDs),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Process descriptions (mini-specs),
e Structure charts,
e Module design descriptions (Design Specifications), and

¢ Data dictionary listings.

Data Flow Diagram (DFD)s and Mini-specs comprise the requirements specification, while Structure Charts
and Design Specifications specify the design. Data dictionary listings may be separated into requirements

and design, or combined into a single product.

Although Object Oriented (OO) analysis and design is appropriate for many software applications, there are
still applications for pracedure/flow based software. In particular, some models which are basically linear in
structure, including many scientific models, are best described using non-OO techniques.

1.1.3 Design Specifications

Module design descriptions form an engineering blueprint for code {20, 24]. A programmer serves analogously
to a construction tradesman, who implements the design. This philosophy has resulted in design documen-
tation which closely parallels the final code or pseudo-code [19]. The design specification and compilable
code can be sufficiently similar that creating and maintaining both can be an inefficient use of resources.
Tke two must also be closely monitored to ensure that they are synchronized. The duplication of effort must
be reduced and the chance of incousistency between products must be addressed.

1.1.4 Experience with Software Quality Control

Many models and associated programs are most clearly specified using mathematical abstractions. While it
is possible to express 4; (t) = [; [FIN(r) + A\pAp (1) — FOUT (7)] exp(=X; (t — 7)) d in plain english text,
it is much more convenient and expressive to utilize the mathematical notation. It is therefore imperative to
support the use of this kind of notation in software development products, including requirements and design
specifications, as well as manuals and other documentation. The transcription of mathematical notation has

proven to be error-prone [18], and must be minimized.

The relationship between Requirements and Design leads to other common items between their specifications,
as they are different expressions of the same system. For example, a requirement specification might specify
a ‘density’, denoted as ‘p’, with physical units ‘%’; the design might then specify a real variable ‘tho’ with

the came g’_:ihutnc and c‘wvi:_t;c\t\ Manv cammarnial CAQR tanla maintain 8 sommann Data n;nt;nnnr‘!rr Tt

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

handle some of this overlap between Requirements and Design. This approach, unfortunately, can compro-
mise the principle of responsibility for products. In an environment where the genealogy of products must
be known, sharing a common Data Dictionary must be carefully controlled, or multiple data dictionaries can
be used. In the past, DGRTP has used multiple data dictionaries, but this has led to transcription related
defects, and a propensity for dictionaries to fall out of synchronization. In addition, any attempt to merge

dictionaries has had to resolve duplicate entries.

For the models implemented for a single environmental assessment, AECL invested over $1 million to verify
software by unit testing [18]. The result was far from encouraging. The contractor (Science Applications
International Corporation) found many defects in the documentation and transcription between products,
but nothing that could materially affect results. An embarrassing number of defects was reported.

The format of software documentation may have a much shorter lifetime than the software itself. Docu-
mentation for some long lived Fortran modules have been published in Mass-11 {a word processor that is
no longer supported), Wordperfect, MS-Word, and others, all with differing styles. Software supporting a
single study has been published in several different formats. This experience suggests that the content of
documentation should be separated from the presentation; the information should be collected independently

and assembled according to the current format in use at the time of final publication.

Attributing ownership and responsibility for products is a basic principle of the CSA N286 standards. In
order to effectively reuse common information, while remaining faithful to this principle, it is helpful to
collect, in very small pieces, information used to assemble software products. The dependencies between
products and components are easier to manage if the shared information is not contained in large packages.
Keeping the granularity of components very fine also allows ownership to be tracked, without assigning
ownership to more than one individual.

Verification of consistency between software products has been a costly and error prone procedure [18]. The
number of products has been high, and verification has not been sufficiently automated. If a high granularity
of components is desired, then automation is clearly required.

1.2 Objective of the Study

The objective of this study is to develop a tool to assist in the development of software and associated
documentation compliant with the CSA N286.7 standard [4]. The tool must address some of the deficiencies
observed in commercial CASE tools which make those tools difficult to deploy for the development of software
that implements mathematical models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Significance of the Study

The TgXspec tool described in this report is a stepping stone to compliance with the CSA standard for the
development of nuclear safety related computer programs. This compliance is expected to be required to
support future licence applications to the CNSC.

The tool offers a viable CASE capability for computer programs which are best specified with intensive use

of mathematical notation.

1.4 Limitations

TEXspec is a prototype. Many features in both the underlying technology and in the usability remain to be
addressed. Some of the requirements of TgXspec are continuing to evolve. As such, the initial development
is of necessity a prototype, developed using a spiral model. This report is a snapshot of the current state of
TEXspec development.

Currently, TEXspec can only generate design documents for Fortran-77 code. In the next stage of develop-
ment, this will be expanded to include some Fortran-90 extensions, including ‘modules’. In the future, this
is expected to expand further to include other languages.

The Graphical User [nterface (GUI) is in an early stage of development. The editors are not sophisticated,
with no search-and-replace capability. Development of graphical products is based on non-graphical editors
and no preview capability has been implemented. The system is usable and effective, but there is still room

for development and further research.

The system has not yet been integrated with a secure configuration management system. Effective sharing of
data and meaningful software audit capabilities await this development. This could be expanded to integrate
with a change control system.

The data processing and the GUI are currently both run on the same machine. A client/server model might
be an important development in the future, assigning the compute and I/O intensive processing to a server.

1.5 Related Work

Aside from commercial CASE tools, the work of Wieringa [29] is notable. The Toolkit for Conceptual Mod-
eling (TCM) is implemented to support the Toolkit for Requirements And Design Engineering (TRADE).
This tool generates several different diagram types and even performs some consistency checking of data flow

A3 TTf oo ol e mambor mee ATINITV VIV et dasvon demmn svomt mdmmrremtales bhacedla weamsbe
WMAOKE ALUC. VEHIVICULIGWCEY) W UIT OFOUVCIlL LU0 Iy Vit LWLATAN Jf AT HIVMUTG, UUTO BVUe AUTYHUGLTELY MOUWIT oL~

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ematical notation and does not integrate well with an acceptable Data Dictionary. Even so, a modification
of TCM may provide a useful interface for TpXspec.

Also a possibility for a drawing interface, I¥TgXcad [14] provides a GUI capable of handling math-centric
IATEX [13] labeling, but would require some modification. Like TCM, [¥TEXcad is also a single platform toal,
running under Microsoft Windows (MS-Win).

Another CASE tool which uses Java as a front end is the ArgoUML (22] design tool. ArgoUML is exclusively
an object oriented tool. The interface is mature and allows the user to interact directly with diagram

components. Since ArgoUML is an *open source’ project, the code is available.

TeXspec is built on the KTEX foundation with a pair of significant extensions. The Noweb [21] system
for Literate Programming is used to separate module Design Specifications and compilable code. Graphics
extensions suitable for the generation of diagrams are provided by the xypic (23] package.

1.6 Notations

TgXspec input files are ASCII files, organized as ‘field: value’ pairs. When specifying the content of these
files, the following notation is used:

FieldName: description of value

The ‘description of value’ is contained within delimiters as follows:

o Drequired field, may appear only onceq
o Drequired field, may appear more than onced
e >optional field, may appear only once<

e >optional field, may appear more than once=<

Where sets of ‘field: value’ pairs are grouped, the group is named in bold type within brackets for later
expansion. The same delimiters are used. For example: >[group name]< specifies a group of fields which
is required and may appear more than once.

These delimiters are used rather than the more conventional bracket/brace notations to allow for non-
ambiguous delimitation of TEX content, which uses brackets and braces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.7 Organization of the Report

The remainder of this report is organized as follows. The underlying technology of TEXspec is detailed in
Chapter 2, including the requirements, design, and various file formats. The user interface for TEXspec was
implemented separately from the underlying processing and is detailed in Chapter 3. Chapter 4 offers some
concluding remarks and suggests some directions for further development. Appendices contain sample code
listings and examples of the longer TEXspec inputs and products that are not fully shown in the text. The
final appendix provides instruction for installing TgXspec.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Specification and Design
2.1 The TgXspec CASE Tool
2.1.1 Requirements Specification for TeXspec

The TEXspec application is based on the following requirements:

o Assemble user inputs to generate consistent publication quality Data Flow Diagrams (DFDs) and
Process Specifications in a modified Yourdon/DeMarco format. This includes support for ‘leveled’
diagrams {30], which allow a *parent’ process to be decomposed in a ‘child’ diagram.

e Permit the use of composite data flows on DFDs. Break composites as required for a child DFD or
Process Specification (Mini-spec).

o Ensure consistency between the data flows shown on the DFDs and Mini-spec.

¢ Generate Structure Charts and Design Specifications.

o Ensure consistency between the flows on the Structure Charts and the Design Specifications.
o Ensure consistency between the Design Specifications and executable code.

o Permit the use of mathematical notation in all products.

¢ Allow sharing of mathematical formulae between products.

o Permit ownership of products to be tracked and reported.

o Allow components under development to reference other components from a variety of sources. Stable
libraries of components should be supported as a default, which new components under development

supercede.
¢ Support the use of Fortran as a target implementation language.

o A user interface must be provided that allows users to interact with TgXspec in an intuitive way. The

interface should require minimal training before a user becomes proficient.

¢ [nformation to be processed by TEXspec is assumed to have a long lifetime, perhaps exceeding that of
TeXspec itself. The information must therefore be stored in a format suitable for later processing by
other programs, or perhaps the human eye.

e A ‘batch processing’ option must be supported that can capture and log processing details.

o Learning curves for both users and implementers should not be excessive. Maintenance expertise should
not be difficult to recruit or train.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Coding languages, libraries and tools should be freely available.

o The system must be portable between computing platforms. Although the desktop environment is
dominated by MS-WIN, being locked to any single system restricts deployment options and reduces
the number of potential users. Also, if the application were divided into client and server portions, the

server environment is likely to be more heterogeneous.

Some preferred attributes of TgXspec are not required in an absolute sense:

1. The application should run in ‘reasonable’ time on common desktop computers. This is a difficult
requirement to quantify, since the term ‘reasonable’ is subject to interpretation and what is common
on the desktop differs in time and location. Even so, it can be said that a responsive application is
preferred over the alternative and that some design effort can reasonably be applied to achieving the
best possible performance.

2. The implementation should be maintainable. Code implemented in an uncommon language is more
difficuit to maintain, as programmers are less likely to be familiar with it.

3. There should be a migration path to allow a gradual transition from existing methods. The “cold
turkey’ implementation of new tools is rarely well received. A pilot project style of implementation is

preferred, as it allows operational difficulties to be dealt with before a large commitment is made.

2.1.2 Architecture of TgXspec

TgXspec’s GUI is discussed in Chapter 3, which captures interactions with the user. Most of this interaction
consists of displaying and manipulating ‘component’ files, which form the inputs for the TEXspec scripts that
select components and assemble them into products. These products are primarily BTEX [13] or Noweb [21]
input files, which can be post-processed to produce output suitable for viewing, printing, or comgiling. While
these outputs may be viewed as being intermediate, they are intended to be retained, as TgXspec places
commentary in them to record the details of TgXspec processing.

While the GUI is a convenient way to construct components and initiate processing, it can be bypassed if
required. The components can be generated by any means that can generate an ASCII output file, including
a text editor. More importantly, the processing can be controlled by any means that can initiate a process,
with no requirement for interaction with a GUL When processing many components, or when a log of
processing is required, this ‘batch’ style processing is a useful alternative.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Neither the TgXspec scripts, nor
the GUI can display or print the
products. Figure 2.1 indicates
that an intermediate script, which
is intended to be edited by the
user, initiates TgXspec to pro-
duce the product files, then con-
trols post-processing as appropri-
ate. This flexibility allows the
user to integrate TEXspec into ex-
isting procedures. For example,
if a static code analyzer such as
Floppy [2] is in use, it can be run
automatically on code as it is gen-
erated. Interaction with a version
control system might be desired,
or the user may even wish to com-
pile code as it is generated. Al-

ternatively, processing that is not

User
‘_‘—_——.—“;
¢~ Graphical Interface
Edit Files &
Manage Processing (\
& \—// '
(" ProcessingScrips Y Components
User Defined Processing,
Dis Display/Print Products
e N\
LA /N Products
Peri Scripts o .-
Assemble Inputs &
Generate Products
Pri

—

. ~

Figure 2.1: Schematic view of the TgXspec architecture

needed can be removed, such as removing documentation generation (including IXTEX processing) until the

code is stable.

2.1.3 Design of TgXspec

All input files for TEXspec are human readable. That is, they are in ASCII format, organized in *Label:
value’ pairs, which is intended to ease visual interpretation. The input files can be created using a standard

text editor and reviewed easily due to the intuitive syntax, without the overhead of an elaborate interface.

A more sophisticated interface for handling TgXspec files, which can be large in number, has been developed.
Still, the ASCII format files can be edited or read by readily available tools and do not require TEXspec
programs to interpret.

In order to support sharing of equations and data definitions, while tracking ownership and responsibility
for content, TEXspec supports a fine granularity of components. Components are tracked independently by
placing each in a unique file which is mapped by the file name to the name of the component and by the file
name ‘extension’ (in the tradition of MS-DOS or CP/M) to the type of component.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TEXspec components, with associated file name extensions, are:
e Requirements Data Dictionary entries (.rdd: Section 2.2.1),
o Design Data Dictionary entries (.ddd: Section 2.2.2),
o Equations (.teq: Section 2.2.4),
o Process Specifications (.ms: Section 2.3.2),
¢ Design Specifications (.ds: Section 2.3.3),
o Structure Charts (.sc: Section 2.3.4), and

¢ Manuals (.tex: Section 2.3.5).

In order to share components between individuals and projects, the location of these files is flexible. A ‘search
list' provides a list of directories to be searched sequentially for component files. This is often referred to as
a ‘PATH". A different ‘search list’ can [;. s:\urap_seosroontsgramssont -

2:\ufdp_sa04\cont1g\ \tinispec

be provided for each component type | .. fsee-teotientian s rimodeananh

in a file named *.TeXspecrc’, as shown £ \ufdp_eadé\cont1g\

-ds: xz\ufdp_sald\sconfig\da
w:\ae_ mupunewoz\m\m-n\
. e pndy ke
in Figure 2.2. - erstvasr
lx\n!. uﬂ\nnnq\.lm_m\nu\
wi\eba_shz\ipa\ u\ N
. . . . wi\abe_¢ _ehz\1pa\int\oodC2' mmuu
‘I'h]s anism wi\ahe ‘C\S.‘\Lﬂt\m‘ﬂl\m\“\u\ﬂ\
meCh 1 mtended to be Jaad: xs\utdp, -:e‘::acu\m\'-mm.n\
w M
supplemented in future versions of ©\De, nx\xn\x.m\u;\m\am-m\ou\
~odd: zz\ufdp_sadd\ \workt\
.. 21\ufdp_eeod\conf1q\Reqey _f
TEXspec. It is intended that compo- | .se: nt:“: ‘sa04\congig) \
23 sa04\ 19\ \
. . Jafd: x:\ufdp_e m\-nng\m\-ma\nu\
nents should be ‘installed’ in a con- x:\ufdp_eadd agraa\

52 \ufdp_e 219\ agrem\
figuration management system for fu-
ture reference. Once installed, depen-

-

Figure 2.2: Example .TeXspecrc flle, specifying search lists by compo-

nent type
dencies between components would be

monitored to ensure that the creator of a product is not surprised by a change in his product caused by
a change in a referenced component (a ‘sub-component’) for which someone else is responsible. For the
moment, however, the directory search list meets the requirement, allowing components to reference other
components from a variety of sources. This mechanism will continue to be supported as a *working area’.
That is, the ‘search list’ will be set up to specify that working directories be searched first, followed by
libraries under the configuration management system.

Component files are each assigned a version of format ‘NINA’, where ‘NN is a two digit integer indicating
the installation number and ‘A’ is a single character ‘draft letter’ indicating changed versions between
installations. This corresponds to the scheme used at AECL to configure software versions manually.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To keep track of the components used to assemble a TEXspec product, the ETEX input files generated
by TgXspec modules contain commentary that identifies all referenced components and the version of

 s=m)> this file 1y DO ROt edit o
‘- Tia g memaionlly by tar cie o w | the TEXspec module that assembled
13 13:29:58 2003 - - .
L. asponant_veraion them. A date-time stamp is included
... X:\0tdp_t \TEXS¥ A s ozr
... designepec 0@ .
. *: /T _she/190 Ty, Vit/vo204/d Y/ooé/elen.dtd 018 and is also placed on the generated
. W:/Mba_shr/IN/ Imp/CCA02/V1L/VO204/diatd ddd 013
VLD i maene/ Ay /AR VG200 dl vt amary/ ok fmag. k. 018 duct (in th left }t
.- 3, &
[Yo, m/-:umwumm«/mmlmu o1 pl'O u n e upper e corner) to
| e -xm_xlmwnmmmulmmlmz ::g . l - t th ﬁl .th
e e i / uni ass0 BTEX
[Y008 -:/-:mlw:-n:uum.: /dicea 004/ dad O1C quely ciate the e Wi
S.. W:/Eba_shr/INV Inp/CCe02/V1E/V0204/d1ctionaxy/ o34/ regeea.add 01C . . .
(Y W:/Wa_ohr/IMA/ Tmp/CCAS2/VI L/VO204/diati enary/cos/sec. dibt 01B the associated product. By retaining
baods /M ene TIR/ g /CCAGZ L E/vOS08/ 21 feva/matime aad o1A

B the HTEX file, it is possible to audit

Figure 2.3: Top of a IFTEX file generated by TEXspec, showing versions ¢he content of any product. This is
of components

demonstrated in Appendix B.

Each formatted product has an additional configured component. The IXTEX ‘class’ .cls file used to specify
the format of the product (in particular the page header) must be installed into the I#TEX system that
TgXspec will use to produce products. At the upper right corner of each generated product, the version of
the “class’ file is printed.

As discussed in Section 1.1.4, minimal formatting information is stored with the TgXspec components.
Formatting is a function of the processing of the components. The hope is that as documentation formats

evolve, the critical content of the components shall not be rendered obsalete.

Many scientific models benefit greatly from the ability to incorporate mathematical notation in their speci-
fication. One of the requirements of TgXspec is to support such notation in all products. To be compatible
with the ‘human readable’ design decision, a notation is required that stores such information in ASCII

format. This information must then be translated into a flexible presentation format.

Since the IXTEX system is already mature and offers leverage toward meeting the requirements stated in
section 2.1.1, TgXspec produces documentation via BTEX.

To keep code synchronized with associated documentation, a literate programming [10, 12} methodology is
ideal. A single file is used to generate both a Design Specification and compilable code. Fortunately, several
systems already exist to support this method in a KTEX environment. The Noweb system was selected
because it is not sensitive to programming language, allowing TgXspec to evolve (in the future) to handle
languages other than Fortran. An additional benefit of adopting Noweb is that much of the syntax for the
Design Specification file (Section 2.3.3) is defined in Noweb, relieving TEXspec of the requirement to define
such syntax.

Components are processed by TgXspec modules according to the How specitied in Figure 2.4. Users of
12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TgXspec provide content in componeats in the ‘Shared Components’ and ‘Product Definition’ categories,
which together comprise the TEXspec inputs. The ‘Shared Components’ are intended primarily to be refer-
enced by the ‘Product Definition’ files.

The inputs are processed into ‘Products’ by TEXspec. These products are listed in Figure 2.4 and correspond
to the products defined by Yourdon (30] and Page-Jones {19], plus the Fortran code. Note that the output
from TEXspec is not publishable (or compilable), but must be post-processed by ¥TEX and/or Noweb to

produce final products.
Onfta Dictonary
Shared — mg.;.[m_l
Components Saustons et

Product

Definition

TeXspec / % N

Processing "'""""“» { . t\m‘_’/) (m:/u)
L w‘% z\ o

Product et ::um
m-o rm cm cm Ctex) m

Figure 2.4: TgXspec flow, indicating the major scripts, with the relationship of inputs and outputs.

2.1.4 Implementation Language

The main TgXspec processing is performed by modules which have been implemented in Practical Extraction
and Report Language (PERL) [28]. The selection of PERL was based on a number of factors:

o it does not conflict with the requirements stated in section 2.1.1 and

o it has sufficient flexibility to act as a general purpose language.

For the purpose of developing a user interface, PERL is not as good a fit. Although a simple GUI can be
implemented in PERL using existing libraries, the required GUI is not sufficiently simple. The TgXspec GUL
is implemented in Java. The selection of Java was based on a number of factors:

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o it does not conflict with the requirements stated in section 2.1.1 and

o the associated ‘Swing’ (7] library can be used to develop a sophisticated GUIL

2.2 Application Shared Components

Some TgXspec input files are intended to be shared. That is, they are referenced by other input files (see
Section 2.3). This relationship is illustrated in Figure 2.4.

2.2.1 Requirements Data Dictionary

Although a Data Dictionary listing (Section 2.2.3) is available as a stand-alone product, the primary use of
Data Dictionary entries is to be referenced by other components such as Mini-specs or Data Flow Diagrams.

Each entry is contained in a file name.rdd where name is the argument in the ‘Name:’ line.

Syntaz of Requirements Data Dictionary (.rdd) file

Name: O short name in ascii format - minimal for unique identificationq
LabelName: D> name to appear in diagrams (if different)<

MathName: >name using mathematical notation entered in BTEX format<
LongName: > descriptive name in ascit format - up to a sentence

Version: D version number for tracking history - appears on listings<
Project: Oproject identification<

Subproject: D sub-project identification<

Author: > author’s full name«

Date: O date that the entry was written<

Implementer: o full name of person who input this entry into the system<

ImplementDate: > date that the entry was entered into TeXspec

Reviewer: »full name of reviewer<

ReviewDate: »date of review<

CompositeOf: >comma delineated list of other Requirements Data Dictionary
entry ‘Name’s if the entry is a composite of other entries<

PhysicalUnits: >SI units enclosed within square brackets<

DataType: »descriptive data type e.g., ‘integer’<

Dimeunsion: »dimensioning iaformation<

Description: © full description - up to a paragraph

An example of a Reqnirements Data Dictionary entry is shown in Figure 2.5. The example is a *‘composite’
entry, composed of several other entries. Note the optional ‘LabelName’ field is used to produce labels on
Data Flow Diagrams which differ from the ‘Name’. TgXspec requires that name.rdd be a valid file name.
but the dash in the ‘sp-Alpha’ might create an illegal name.rdd. Using ‘LabelName’ prevents the potentially
offensive syntax from appearing in the ‘Name’ field, but diagram labels can contain the dash.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Name: spalph

LabelName: sp-ALPHA

MathName: sampled \alpha

LongName : Sampled paramaters for alpha radiolysis
Vezsion: Q18

Project: cca

Submodel : inroc

Author: 8.E. Oliver

Date: Oct 4, 2000

Irplemanter: S.E. Oliver
IrplementDate: Oct 4, 2000

CompositeOf: AALPHA,ALFCOF,ALPRDO,ALPHTI,BALPHA, CALPHA,DALPRA, EALPHA, FALPHA , NOALPE, STONOA
Description: Sampled paramaters for calculation of fuel corrosion rate
dus to alpha radiolysis of water.

Figure 2.5: Example Requirements Data Dictionary file.

2.2.2 Design Data Dictionary

Much like Requirements Data Dictionary entries, Design Data Dictionary entries may appear in a Data
Dictionary listing (Section 2.2.3), but their primary use is to be referenced by other components such as
Design Specifications or Structure Charts.

A Design Data Dictionary entry may reference a Requirements Data Dictionary entry via the ‘Requirements’
field. If this is done, any missing fields in the Design Data Dictionary entry will default to the value found
in the specified Requirements Data Dictionary entry. This is particulariy useful to avoid transeription and
synchronization problems with the ‘MathName’ and ‘Description’. Fields which are specified in the Design
Data Dictionary supercede any inherited defaults.

Currently, the ‘CompositeOf’ field is supported in the Requirements Data Dictionary only, and is unsup-
ported in Design. As TgXspec evolves to support programming languages with more advanced data structures
than Fortran-77, this will probably change.

Each entry is contained in a file name.ddd where name is the argument in the ‘Name’ line.

The dictionary can specify a constant value, or a “condition’ may be placed on the value. A ‘condition’ is
interpreted as a a ‘precondition’ to modules for which the variable is used as input and a ‘postcondition’ to
modules assigning a value to the variable. This is usually a physical limitation on the range of valid values.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Syntaz of Design Data Dictionary (.ddd) file

Name:
LabelName:
MathName:
LongName:
Version:
Project:
Subproject:
Author:

Date:
Implementer:
[mplementDate:
Reviewer:
ReviewDate:
Requirements:
PhysicalUnits:
DataType:

Dimension:
File:
Common:
Value:
Condition:
Description:

D short name in ascii format - minimal for unique identificationd
»name to appear in diagrams (if different)<

>name using mathematical notation entered in BTEX format<
tdescriptive name in ascii format - up to a sentenced

D version number for tracking history - appears on listings<

D project identification<

> sub-project identification<

> author’s full name<

O date that the entry was written<

o full name of person who input this entry into the system<
Odate that the entry was entered into TeXspecq

»>full name of reviewer<

»date of review<

> ‘Name’ of corresponding Requirements Data Dictionary entry<
>SI units enclosed within square brackets<

> data type suitable for program design in target language<t

O dimensioning information<

>for shared (COMMON) variables - file to contain definition<
>»name of Fortran COMMON block to contain date<

»value if constant<

»limitation on value, used as ‘pre-’ or ‘post-condition’<

o full description - up to a paragraph<

In cases where the variable can be directly mapped to a Requirements Data Dictionary entry, the *‘Require-
ments’ field can be used to specify the mapping, and any common fields are inherited from the Requirements

Data Dictionary (unless overridden here).

An example of a Requirements Data Dictionary entry is shown in Figure 2.6.

Name:
MathName
Longiama
Version:
Project:
Submodel :
Authog:

Date:
Isplemsentac:
ImplemantDate:

R

DataType:
Dimension:
File:
Common:
Dascription:

MLPHA

a_\alpha

Fit coefficient a for alpha radiolysis
01c

cc4

INROC

3.E. Oliver

Octaber 25, 2000

$.E. Oliver

October 25, 2000

double

scalar

SPALPH.INC

SPALPH

Dmpirical fit coefficient “a' for alpha rzadiolysis,
used in the calculation of of the degradation rate par

Figure 2.6: Example Design Data Dictionary file.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.3 Dictionary Listing
Data dictionary entries are incorporated into other products, but can also be assembled into a stand-alone
product. TEXspec provides a module ‘formatDD.pl’ which provides listings of Data Dictionary entries. It can

also provide a cross-reference, showing the Process Specifications (Section 2.3.2) and Design Specifications
(Section 2.3.3) in which they occur (optionally colour coded to indicate the direction of flow).

A sufficient number of fields exists to make a complete listing impractical to tabulate on a single page. To
ease this problem, formatting on "legal” size sheets is supported, and the default orientation is landscape.
Even so, the user is obliged to select a subset of the available fields for listing. The user may also specify
the width of particular fields. Usage is shown in Figure 2.7 and a sample output is shown in Figure 2.8.

The ‘width’ fields are specified in KTEX-style measures including units (e.g., *0.5in’). The “xref’ option
produces a cross reference column and the ‘flow’ sub-option causes the cross reference to be colour caded to

indicate direction of flow.

Usage: formathD.pl
RIDIM #... “"R¥equirement, “D”esign, or “M"erged
[lines=nn] #§... est max lines per page
[chars=nn] #... est chars/inch
[caps=nn] #... est CAPS/inch
(portrait]
(dascription(:width]]
[xref [:width] [:flow]]
[longnama [:width]]
(mathnamea (:width]]
(version(:width]]
[project[:width]}
[submodel [:width]]
[author(:width]]
{date[:width]]
(implementer(:width}]]
(implementdata(:width]]
[reviever[:width]]
[reviewdate([:width]]
(physicalunits(:width]]
(dataType(:width]]
(dimension[:width]]
(file(:width]]
[common {:width]]
(value([:width]]
(requirements{:width]]

>filecut.tex

Figure 2.7: Usage of formatDD.pl.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fon W W 1TV N0
Name Version | Lang Name Symbal Description Comman | Appears in

TALFCOF | 01B | Scale factor for alpha dose Sa Estimates uncertainty in piece- | SPALPH | ALPHOS

wise linear fit of alpha dose as a
function of time aft).

ALPHDO { 01B alpha dose to used fuel surface a values of alpha dose rate to the | SPALPH | ALPHDS
surface of used fuel

ALPHRE | 01D release rate from alpha radiolysis Aé(t) release rate from used fuel per ALPRDS
container fram alpha radiolysis

AREABF | 01B area of the backfill Bp area of the backfill VLGDEP

AREADZ | 018 area of the damaged zone Bz area of the damaged zane VLGDEP

BALPHA | OIE Fit coefficient b for aipha radiclysis | b, Empirical fit coeficent *b’ for { SPALPH | ALPHDS

alpha radiolysis, used in the cal-
culation of of the degradation
rate per unit surface area of fuel
Ca (t) =[da (¢ + £l 10%
BKFRAR | 61D frac of vault with backfll Ap =2p/S | fraction of vault area containing | VARLVG | VLCDEP
bacifill VLTDEP
BUFRAR | 01D frac of vault with buffer Ag =2Tg/S | fractian of vault area containing | VARLVG | VLGDEP
buffer VLTDEP
EALPHA | Q1E Statistical parameter sipha radiclysis | ——————y | Based on experimental data cor- | SPALPH | ALPHDS
L (ogas-inga) relating alpha dose to rate of
fuel corresion. Used to estimate
the standard deviation of pre-
dicted corresion rate.

EXPONA | 01C log(predicted aipha corrasion rate} | logéa (t) base 10 log of predicted corro- ALPHOS
sion due to alpha dose as a func-
tion of time

FALPHA | 01C Mean experimental alpha radiolysis | loga Mean experimental aipha radi- | SPALPH | ALPHDS
clysis

Figure 2.8: Portion of a Data Dictionary listing, including a cross reference column.
Input and output data flows are colour coded green and red, respectively. Local variables are black.

2.2.4 Equations

Equations are held in individual files, with version information similar to other TgXspec components. These
files can be inserted into XTEX documents using the \input{} macro. A slight modification to the usual
TrXspec file format stores TgXspec information in IXTEX comments, as shown in Figure 2.9.

It has proved convenient to generate these files using a PC/Macintosh product called MathType, which

adds additional comments to the file, containing encoded information which allows the equation to be

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used in PC-based word processors, |sase: CylinderMassSal

SLongtame : ion-di on e on (cylindrical)
M - \Version: (23 %
as well as KIEX, as shown in Fig Arecect: o
ASubproject: INROC
ure 2.9. The comments generated ...,,.,é“' T.%. Melnyk

by MathType are ignored by IXTEX, |‘iselessntes: T.X. malnyk

. \Dascription: In cylindrical (r,s) co-ordinates,
but can be imported back onto the |4 prios mcy ‘m--ﬂ:: on mass balance equation
1) for a single decaying nuclide.
personal computer for inclusion in |WathTypeizznxe7! qacyOTamiqaedagAadst. — ras
\quasqasnOCasbakialiiiGi2oWdsaticreCaikdsaGedosabiXsl
- . SeiGH2RXEYnNda s ke 3T i rdBq 1
word processing documents. This | yocaabakiess iGu2Rxca by 2v,

decreases the possibility of inconsis- |+ :
aMeiGH2kXGC6bascy
asasGaysGasiisysGagiRedosabiXGl . aliiGH2RXCYDaacy:
tency between TEXspec documenta- | voeisceseorrrstinsasrscoer o oo «*
. R {{\paztial ¢} \over {\partial t}}
tion products and related technical |-(io_s\kecn 1pt \partisl ~2¢} \over (K\;\partial r*2}}
-{{D_r\kern Ipt \partial C} \cver {Kr\;\partial :”2H
-{{D_s\kezn lpt \pertial “2C} \ {K\;\pactial z*
reports, memoranda, etc. that ref- | (V::\um x:: \pastial C] \over (K\:\pestial z1]
. +{{\:\phi \:;\partial C} \Over (Kr\kern lpt \partial r}}
erence the same equations. +\Lasbda C=0
Although the use of MathType is
optional, many users prefer the use
of a graphical equation editor over
ASCII input of HIEX math syn-
tax. Figure 2.9 illustrates the use
of the graphical editor and shows
the ASCII equivalent. Other graph-
ical editors are available including Figure 2.9: An example Equation file, shown in ASCII format (top) and
. .. . A being edited by MathType (bottom)
TgXaide, which is available without

charge from the manufacturers of MathType (but lacks the word processor interface).

3C_D,#C_D.C_D.FC_V.0C 98C
d Kor? Krdr K022 Koz Kror

AC =0

The syntax for the Equation file is as follows:
Syntaz of Equation (.teq) file

%Name: D short name in ascii format - minimal for unique identification<
%LongName: > descriptive name in ascii format - up to a sentence<t

% Version: Dversion number for tracking history - appears on listings<
%Project: D project identification<

%Subproject: D sub-project identification

%Author: pauthor’s full namex

%Date: Ddate that the entry was uritten<

%Implementer: o full name of person who input this entry into the system<a
%ImplementDate: >date that the entry was entered into TeXspecd
%Reviewer: > full name of reviewer<

%ReviewDate: »>date of review=

%Description: © full description - up to a paragraph<

»-comments from MathType<

> HTEX equation<

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Application Composite Components

Some TEXspec input files are directly associated with a final product. They typically reference the shared
components discussed in Section 2.2.

Each of these files is the primary input for TRXspec processing as shown in Figure 2.4. Note that Design
Specifications act as both a primary input for designSpec.pl and a shared component for structureChart.pl

2.3.1 Data Flow Diagrams

DFDs are stored by name, and are assigned a number only when the processing script (dfd.pl) is run. This
mechanism allows a project to be re-numbered without necessarily changing the content of the diagram. The
output from the processing script is named according to the specified number, which is then processed by
IXTEX. This naming convention is important for consistency checking, as discussed below.

Figure 2.10 illustrates this process. The diagram *Diagram-

DiagramName.ds

Name’ is assigned number 1.2.3, which is represented as *1 2.3’

in file names. Consistency checking is performed against the '?Ifd_1_2.t ox

parent Data Flow Diagram (DFD 1.2) as described below.
dfd_1_2_3.tex
Syntax for processes (often called *bubbles’ when speaking of

Data Flow Diagrams) and data stores are described by Your- LaTeX
don [30]. Of particular importance is the distinction between L
*atomic’ processes (i.e., processes which have an associated Pro-

diagram

processes with lower level DFDs (i.e., processes associated with Figure 2.10: Dataflow Diagram processing,
child DFDs which decompose the process further) which are specifying the diagram number (1.2.3) at run

cess Specification), which are shown with double circles, and

shown with a single circle. time.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The syntax for the DFD file is as follows:

Syntaz of Data Flow Diagram (.dfd) file

Name: O short name in ascii format - minimal for unique identification<
Version: Dversion number for tracking history - appears on listings<
Project: Dproject identification

Subproject: D sub-project identification<

Author: Oauthor’s full nameg

Date: O date that the entry was writtenq

Implementer: O full name of person who input this entry into the system<
ImplementDate: o date that the entry was entered into TeXspec

Reviewer: > full name of reviewer<

ReviewDate: »date of review<

Units: >valid BTEX units of measure<

Labels: O ‘math’, ‘short’,‘'med’, or ‘long’q

>[process spec|<
©[connector spec|<

> [datastore spec| <

(flow spec|d

> {legend spec] <

Notes: >annolation associated with the diagram<
Where:

process spec =

Process D#<: Ddfd or mini-spec name

(name may include \\’ = line beaks for labeling)<
At: D1,y coordinates in specified unitsq
atomic »flag to indicate that process is a mini-spec<

connector spec =

Connector: plabel for off-page connectord
At: >z,y coordinates in specified units<i
datastore spec =
DataStore: >label for data storeq
At: D,y coordinates in specified units<i
flow spec =
Flow: Dentry in Requirements Data Dictionary<
From: O process, connector, or data stored
To: D process, connector, or data store
Type: > ‘static’ or ‘temporal’<
Inflection: >curvature of arrow<
RelPos: >position of label along the curve (0,1 are the ends)<
LabelOffset: »offset of label away from the curve (99 = do not label)<
legend spec =
Legend: O ‘vertical’ or ‘horizontal’q
At: D1,y coordinates in specified units<t

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Connectors are placed at the ends of arrows representing flows that terminate outside the current diagram.
Processes, data stores and connectors are all located on the diagram by specifying (z,y/ coordinates, in units
selected by the user.

The specified positions are relative, but the scale is absolute. The origin will be located so that negative
values will not be placed off the page. Distances between objects that are larger than the available drawing
area causes the diagram to be truncated; no scaling is performed.

Flows are specified by stating the end points (processes, data stores, or connectors), the inflection of the
curve and label location. The meaning of the values for curve inflection and label location are defined by the
xypic [23] package. The inflection is specified as the offset from linear at the midpoint of the curve, in the
same units as the rest of the diagram, with positive values bending up and to the left and negative values
bending down and to the right. Label location is specified relative to the flow, with 0 being the start of the
flow and 1 being the end of the flow, but values less than 0 or greater than | are permitted. Label offset
values place the label the specified distance from the curve, with positive values being above the curve and
negative offsets being below the curve.

Tatle: Detarmine Speciation of Groundwater
Version: s i
v:ogmmI ?mc-tx iows
Auther: Tod Moluyk Prom: foput WARL "
Date: Feb 22, 2000 to: , Shlsuists\icr phate\\C:
Inplamentar: fteve Oliver Relles: * 2 -
IsplementDats: Sep 29, 2000 LabelOffeet: -0.15
::.x:: Name Tlow: tprion
Prom: Toput fprion
Precess 1: Caloulate\\Cal A\ To: Caloulste\\Calcaum-Sulphate\\Concentrutions
At: Y v v Inflestion: 0.1
atemis ‘ RelRoe: 8.18
LabelOffsat: -0.1S5
Frocess 2: Caloulate\\Miner\\Aaion\\Conceantraticns
ac: 3.25,3 Rlove fprion
From: Loput fprioa
Precess 3: Adjust\\Sodium-Chlorids\\Conoentraticns oz ‘:":“‘Mﬂ“""\\c‘“‘“““‘“
AR: 1.5 Infleation: .
atamia Labelotfsat: 99
Connector: Input NCASUL b
At: 0.5,1 ®
Cannectec: Input fprion
At: 0.5,2 []
Cannectar: Input spmjon
At: 0.5,2.5 Flow: oars - .
Conneater: Input minor_eq Feam: Calaulate E\Miason\y
ax: 0.5.3.5 o , Mo \
Cennecter: Joput spmicn felfos: 0.35
Cannsotor: x;"“ . LabelOffest: -0.27
Atz 0.5,4.3
Conneatar: laput
3 0.5,3
Cannectar: Output ISP
At: 6.5.5
Matea:
Ca toe: [- -4 Taplementsd sPC
u;“ Iz :rﬁ "
= -
Atz €.3.95
Canneatar: [~ 13
At €.1.4

Figure 2.11: Exampie DFD file.
Not all flows are shown. Note the use of the \\ to denote a line break in the ‘Process’ names.
The ‘Notes’ are supplemented by generated notes from TgXspec, as shown in Figure 2.132.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An example of a DFD file is shown in Figure 2.11, and the output genzrated by TgXspec and I¥TEX is shown
in Figure 2.12. A complete example is contained in Appendix A.

Nﬁ’ 1510084 2008 D-Mmhwl.l
_ INROC-LE ___jnroc
Data Flow Diagram 1.4.3 Determine Speciation of Groundwater ~ Version 01B
Author: Ted Melnyk " Feb 22, 2000
Implementer: Steve Oliver Sep 29, 2000
| Reviewer: September 29, 2000

Implemented by SPCGCN

equilibrium-constants = {minor_eq, KCASUL,KW}
sp-ion = {spmicn, spmjen, fpeion}

gw-speciation = {conc_anions, ISF}

conc-majoranions = {CCL, CSUL}

conc-anions = {conc_majoranions, conc_minoranions}

Figure 2.12: Example Data Flow Diagram.
‘Notes’ are generated to detail the contents of any composite flow whose contents appear on the
diagram. The components which appear on the diagram are shown in bold type.

TEXspec supports two types of flows: ‘static’ (not time dependent) and ‘temporal’ (time dependent). This
contrasts with the Yourdon [30] specification, which supports ‘data’ and ‘control’ flows. Both ‘static’ and
‘temporal’ flows would be considered ‘data’ flows by Yourdon. The visual presentation of two distinct types
of flow is similar and only a generated legend (which is optional) would betray the user who redefined the

two TXspec flow types for the purposes specified by Yourdon. In the future, TEXspec may be enhanced to

s,
:o‘:vgurc:: 2 :‘“-d [4 Mn::cy) ec':: t.}n\o or narhane an 3.:‘“::0—}' numhar cf Aour t}n'\oo

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consistency between DFDs is monitored by TgXspec. As shown in Figure 2.10, at run time dfd.pl accepts
an input parameter to define the diagram number. Generated output is tagged with the diagram number,
by including the number in the name of the file containing the generated output. The script looks for output
from the parent of the assigned diagram number by searching for the file name containing the parent’s
diagram number. If output from the parent diagram does not exist, then a warning message is generated. If
a parent diagram does exist, then consistency is checked, allowing for composite flows. The input and output
flows on the current diagram must correspond to the flows to/from the appropriately numbered Process on
the parent diagram and all flows belonging to that Process must be represented on the child diagram. This
can be either an exact match, or flows on the child diagram may be contained in composite flows on the

parent.

Parent DFD 1.4.3

Child DFD 1.4.3.2

= {minor_sq, KCASUL, KW}

equilibrium-constants
- spmics = sty m
) alorey.» (KF2. K31 K$2.K5C.KSF.KSP)
majoranions = {CCL, ph =
pasegion = (mne(2 CS!H.} cone.mi oo} cone-minoranions = {C¥, CFCARB, CHPS}

Figure 2.13: Consistency Checking of DFDs.
Parent DFD 1.4.3 is shown on the left and it's only child (DFD 1.4.3.3) is shown on the right. The highlighted
flelds illustrate consistent use of a compaosite flow - no highlighting appears on actual output.

Figure 2.13 illustrates consistency checking. The parent diagram (DFD 1.4.3, on the left) contains three
Processes. Process 1 and Process 3 are represented by double lined circles, indicating that they are *atomic’
and are detailed in an equivalently numbered Process Specification. Process 2 is represented by a single lined
circle, indicating that a child diagram (DFD 1.4.3.2) exists. as shown on the right.

To illustrate the treatment of composite flows, ‘spmicn’ is highlighted in red and it's components are high-

lighted in green. The child diagram (on the right) shows inputs of ‘CFTOT’, ‘CPTOT’ and “TCAR’, which is

consistent with flow ‘spmicn’ into Process 2 on the parent diagram. Detail of the decomposition is contained
24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the ‘Notes’ section on the child Diagram. Note that ‘spmicn’ is itself a component of flow ‘sp-ion’, which
would appear on the grandparent diagram (DFD 1.4).

2.3.2 Process Specifications (Mini-Specs)

Process Specifications are stored by name and are assigned a number only when the processing script (miniS-
pec.pl) is run. This mechanism allows a project to be re-numbered without necessarily changing the content
of the specifications.

Input and output flows are specified as Requirements Data Dictionary entries. If the parent Data Flow
Diagram (Section 2.3.1) has been processed, then the flows are verified for consistency, otherwise a warning
message indicates that no verification was performed. Flows in the Process Specification must be atomic,
but the corresponding flow on the Data Flow Diagram may be composite (although this is discouraged).
Otherwise, consistency checking is analogous to checking between a Data Flow Diagram and it’s parent.

The detail of the process is specified in free form ETEX. No consistency checking is performed between this
and the specified flows. A macro is provided to allow the user to include a TEXspec equation. The macro
includeEquation{name} causes TgXspec to scan the search list for name.teq and insert the contents at the

specified position.

The syntax for the Process Specification file is as follows:

Syntaz of Process Specification (.ms) file

Process: O short name in ascii format - minimal for unique identification<
Version: D version number for tracking history - appears on listings<
Project: Dproject identificationa

Subproject: > sub-project identification<

Author: D author’s full name

Date: O date that the entry was writtend

Implementer: & full name of person who input this entry into the system<
ImplementDate: ©date that the entry was entered into TeXspec<

Reviewer: >full name of reviewer<
ReviewDate: »date of review<
\begin{description}

pshort description«

\end{description}

> \inputFlow{ Requirements Data Dictionary entry}=<
> \outputFlow{ Requirements Data Dictionary entry}=<
D ATEX description of process<

An example of a Process Specification file is listed in Figure 2.14, with the corresponding specification as
generated by TgXspec and ETEX.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Iottewg KARE | SOBUE D 60 A3 AM @BIIV] ARHWINS), 20) 1 jasenimmip o oy |

e

tx) vt :...A N VM.. 1oy g

’»rxtv_.‘a:_.._l-.—...-_.:s-a!.-t.:t..-: .4.:: JS: ' ..!: .!:..3»..:5...:_&:.1
P st x.. _r._-t. w b Sptprente gy epeepensed | s oo (g .:.L .:.x_$

12) (LY R Y R R Y A N IR Y]
wegh e f Iy H) Y AG smrasesap st iy
(11} ne g
1408 okt s bon

3 M1 mangy pour > of sy 100y 28 g0 ne ¢ 140 ‘estmrnn fayre)
o gttt i: .l -!.:S.xt =.. Jof etie) NI QRIS W : Jareans puii g O1v gy »...r.l...:- dinre) o §

] WA B aranfeims ¢ [osNoON

t 1) W) Sanivg uwen X Lovud

} Aprrenls wining sumei diiv e «Q = vl

[3) M ¥) gt akaapeatns o kaeitinn Y A S INOON
o/t | owmp! Fury s | oty

HOgaupnitite) ot J1Wpe) 10 Juopte) Aaer) Jevt) ERanre s oo Segerttvd 2ep) enntAs ey}

.9@..1:.1:/ if-xlx...wu..?.z
o0z ot Hy MG 5 Erindiide
OONE 22 T3] LT ARLL UL 7

. Viorequeay | aarn(peg e suruttasaq) | | el]

hX)

TEITRE TS

‘Twnuwyy Kioeyl ooxux sy} JO UOTIDGN
JSSSINTFES ISUTEIUOD, S} UY POESNONYP ST SIYL

{voryenbenjpus\
{ebe) Toqey\ (I8 YPTYTEOUYqEND | uoFIRnbRSPATOUT\
{goyyenbe) upbeqy

‘ sssoons, jo ¢d¢ L3trrqeqoad SuyAwy Yowe

! (exsurejuco Teiod) mTeYIY $Né WOX3 (seanTTe] IRUTWIUOD)
wegseOONs
30 Jequmu sq3) periewo ¥ fwg LyFIuend eyl VOFINQEIISTP
K3 ¥TTqeqoad TeTwousq SATIRTIENO oq3 ¥ §(d’K/w) a¢ exequ

{vorzenbenjpus\

(b Toqey\ (eanTyezreaieiuco)uoyiwnbgepniouty

- _ {0)) (voyyenben)urBeq,

anm gons ¢{\L M ‘'¢ TI\ UF\ & N¢ surEIeep BETHISWIO
.:oﬁ!ﬁl’.g/

:v..:li? o=a N
{zorienbe jusbeq\ ¢ (&4 &'z N!0)a oT\ &4.0¢ 31

SUTTASU\SU TTASU\ {HOTINQTIISTP TRTWOUTH SATIR[TENO W3y
w033 peutwIelep SY vISUFwIueo eIl ¢ N§ JO Ino

‘¢4 ¢ ‘wzreurwiuco peTYr 30
Joqunu sy3 OF ‘EIGUTEINCO TTW 103 GENE oY) PUT IUWISTVOO Q.—.
¢4 a¢ xsayeruoo Tenprarpuy Luw Jo Lyyrrquqoad eanyyes eqr

{oes " gamoon)noTHINEINO\
{zowear }noTminday\

(oes” Brarvaz)noTaInduyy
{oes Dgmoam)noTAINGUTY\

‘UOTIRNMYS Y3 JO 3ANYE
oyl I¥ PRTTE3 SARY w3 FISUTRIUOCO JO ISquEntl OQ) SUTRISIed

0002 ‘0T 1dy ejeqivesetdsy
ISATIO ‘E'S (xejuswetday

0002 ‘ZZ qea toyeq
whaten ‘w‘L ! oIy
ootz !3oefoxdgny

"0 t308Coxy

YIo {NOYSIGA

seINYTTel ISUYEIU0) SUTEIeIed

Figure 2.14: Example Process Specification.

The input flle on the left resulted in the specification on the right.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.3 Design Specifications

Module design documentation adheres to the concept of literate programming (10, 12|, which uses a single
source file to generate both the Design Specification and compilable code (the same file is also referenced to
assure consistency with Structure Charts, as discussed in Section 2.3.4).

The syntax follows a hybrid format, with TeXspec specific syntax providing an interface with the rest of the
system. This component is processed by TeXspec to produce a Noweb [21] input file, which is then processed
into final products.

Noweb is a literate programming tool that permits a module to be broken down into code chunks which
consist of blocks of BTRX commentary and corresponding compilable code. It has a simple syntax that is
portable to most programming languages, including Fortran.

Noweb code chunks that are not referenced in other chunks are placed in the default code chunk << = >>.
The description, declaration, "include”. and directive chunks are generated automatically by TEXspec.

Although the generated code is not intended to be a main-

module.ds

tained product, the description is replicated (as commentsj in
the generated code. The code “chunks’ are also commented,
by practice, to allow easy navigation when using a symbolic
debugger.

Also carried through to the code are the variable definitions

from the Design Data Dictionary, These definitions are placed | module.t
next to the variable declarations. This includes the ‘Physical
Units’ assigned to each variable and allows the use of AECL's
unit checking program ‘UNITCK' on the generated Fortran

code. UNITCK is a proprietary static analysis tool that bal- module.tex module.for

ances physical units in each executable Fortran statement. latex

The actual processing of a Design Specification accurs in) .

P e specification
stages, as shown in Figure 2.15. The processes performed by
TEXspec PERL scripts appear in highlighted boxes. Other

processes are shown as unshaded baxes.

Figure 2.15: Design Specification Processing
A Design Specification file is processed by *designSpec.pl” to produce a Noweb [21] input file. Noweb’s two
constituent programs ‘noweave’ and ‘notangle’ independently process this file to produce a ITEX input file

containing the formatted specification (see Figure 2.17), and an ASCII file containing the compilable code.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Noweb output contains declarations in ‘code chunks’ which would be printed in the specification. TEXspec
prints a superset of this information in tabular format, so the ‘cleantex.pl’ PERL script removes the redundant
code chunks before generating the Design Specification, without impacting the generated code.

The code output by Noweb contains, by default, many blank lines which make it difficult to use a symbolic
debugger. The PERL ‘cleanfortran.pl’ is used to remove the extraneous blank lines.

Further reformatting of the code is up to the user. For example, it is possible to pass the Fortran through
CERNSs Floppy [2] package to reformat the code and produce a rudimentary static analysis. Most processing
that users would perform on manually generated code can be applied to the generated code.

When revising and debugging code, it may be advantageous to eliminate the overhead of generating the
documentation as shown on the left branch of Figure 2.15 (starting at ‘noweave’) until the code is stable.

Design Specifications are checked for internal consistency between declared variables and the Fortran code.
Since information in the Design Data Dictionary is not repeated, but is extracted and placed in the Design
Specifications (and hence the code), these products cannot be inconsistent with the Data Dictionary.

Information that appears in both the Design Specifications and the Structure Charts (Section 2.3.4) is also
not repeated. The Design Specification acts as the repository of the shared information that the Structure

Charts reference so they cannot be inconsistent.

Similarly, users are encouraged to share equations in a common pool (see Section 2.2.4). Although there
is no requirement to do so, it is helpful to keep notation consistent and to propagate changes through all
affected products.

Since both the code and the formatted specification are produced from the same file, TgXspec(through
Noweb), acquires the attributes of literate programming {10, 12] systems, including consistency of the spec-
ification and the code. Correct code documented with an inconsistent Design Specification can result in

many software defects [18], which cannot occur with literate programming techniques.

Arguments and shared variables must have a declared direction of flow: ‘input’, ‘output’ or ‘input,output’.
This information is reflected in tabular listings in the specification (the table for call arguments is similar to
the table for shared variables shown in Figure 2.17). It is also used in the generation of Structure Charts
(Section 2.3.4).

When the design specification is processed by TgXspec, the Fortran code itself is examined for internal
consistency with the declared variables, including direction of flow. The use of undeclared variables is
flagged, as is the declaration of variables that are not used. TEXspec issues a warning message if variables
designated as ‘output’ flows are never the subject of a Fortran assignment statement, or if 'input’ variables
are changed. It is critical to have ‘input’ and ‘output’ correctly tagged, to ensure a correct Structure Chart
(see Section 2.3.4), Dictionary Listings (see Section 2.2.3) and Design Specification.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The syntax for the Design Specification file is as follows:

Syntaz of Design Specification (.ds) file
Module: >module name in ascii formatd
LongName: >descriptive name in ascii format for Structure Chart<
Version: D uersion number for tracking history - appears on listings<
Project: D project identificationd
Subproject: D sub-project identification
Author: D author’s full name<
Date: Ddate that the entry was writtend
Implementer: D full name of person who input this entry into the system<
ImplementDate: Ddate that the entry was entered into TeXspec
Reviewer: >full name of reviewer<
ReviewDate: »date of review<
Language: o ‘Fortran-77," ‘PROGRAM’ or ‘SUBROUTINE' or ‘FUNCTION’q
Standard: >applicable programming standard<
<<description>>=
D text descriptiond
<1 %def description<
> (argument] <
> [shared] <
Constant: >variable with an assigned value in Design Data Dictionary=
> (local] <
{chunk|d
Where:
argument =
Argument: Dvariable in Design Data Dictionary<
Flow: O ‘input’ or “output’ or ‘input,output’q
Dimension: & Dimension to override definition in Design Data Dictionaryd
> [prepost| <
shared =
Shared: Duariable in Design Data Dictionary<
Flow: > ‘input’ or ‘output’ or ‘input,output’q
> [prepost| <
local =
Local: Duariable in Design Data Dictionary<
Dimension: o Dimension to override definition in Design Data Dictionary<
Data: & Initial valueq
prepost =
Precondition: >ascii text< or
Postcondition: »ascii text<
chunk =
> <<chunk name>>=<
> coded

L > %def chunk name<t l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An example of a Design Specification file is shown in Figure 2.16, and portions of the output generated by
TrXspec and BTEX are shown in Figure 2.17.

wodule: veanay Vmg‘;'l"—;u Data n:: Diagram process
Version: ["
m""::_ o AMditionally, VIGDEP darives parammecars for vault
Submodal : Dmoc regions, based cn the proparties of the componamt
Author: 3.8. Olivec vault he lation of miltiple
Date: car: :': z:h:gl vanlt sectors into a single vault region is
“wl-mu=)ar 13, 2001 a ac;:m.!m to i1aprove camputational
Long ne time-ind) vault
Language: FORTRAN7 7, SURROUZDNR
Standard: ocne The module consists of two sections
\beqin(itamize}
<cdmscmipmiondde \item Bvaluate Darcy velocities and disparsion cosfficients
ne tiae P vwlt p that require ¢ with the . .
paramstars dataxmned in @4 § 15 the T » 1). hd
Based oo code VERSION O6C (2001-MOR-08) T. MEDNYK Q:‘z*:‘.':::;‘ sejicnalized vault properties.
1 Vdaf description <cmatndde
. <<gecsphere>>

Shared: WRAR <Cregronal>>
Tlow: inpue T
shared: ™D

btninnd t tdef main
Flow: waput
shared: xR \oep
Flow: toput :

.

Shared: CAFOMR
Pow: ol l‘vu.lutu components of Darcy veloaity in rock for one sector

[

I3

.

The roam axis is assumsd to be parallel to the X component
of the gecsphare network cartasian oocordinate systam

! so the axial componemt is aimply
Shared: mner $\includeliquation{DarA_roak}$.

et

e

input
Frecomdition: 1 \leg MELIGIT I\leq$ MAXEIM The transverse groundwater velocity ia the roak

s pondingly d to ba in the X plane
of the gecsphere netwark cartasian occordinate systam
and 18 evaluated as

$\1ncludalquation(Dart_sock)}$.

Dafine $\theta \equiv$ angle batwean the axis of the foam
and the direation of watar flow. Camputs
$\sin\left(\theta\right)$ and $\ococs\lsft(\theta\right)$.

[
MWARVO
YD
viacEr Assume pemmeability of buffer is zero, and
henos, Darcy velocity in buffec is sero
e $\math(DAREBV)=QS.
<<4arcyCamponantsd s
Cimmmsion: 120 Covrnn Compute axial and radial componants of Darcy velocity
BTN DARKVA (S3C) = DARRKX (88C)
DARKVR(SEC) = SORT(DARAKY (S5C) ¢*2 + DARRKE (23C) #¢2)
Corens Svaluats sin and cos of angle detwesn room axis and
xveos
VIR
.

RXVEIN = DARKVR (SEC) / DARRK(SEC)
RKVCOS = DARKVA (SBC) / DARRK(SEC)
¢t ‘daf darcyComponents

\ssp

Figure 2.16: Example Design Specification file.Not all flows or ‘code chunks’ are shown.

Figure 2.16 is not a complete listing, but illustrates the format of all sections of the Design Specification
file. The complete listing is contained in Appendix B. Note the ‘description’ code chunk just after the
initial fields. This chunk receives special treatment: it is reformatted into comments and placed near the
top of the generated code, but is not reformatted in the specification (observe the ‘description’ code chunk
in Figure 2.17).

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The example module in Figure 2.16 has no arguments. Argument flows are placed in the flow list in the
order that they occur in the argument list. By convention these flows would be declared before any shared
or local variables to make this order clear.

Arguments and shared variables may optionally specify a precondition and/or a postcondition, depending
on the direction of flow. If the variable has a ‘Condition’ in the Design Data Dictionary, then that condition
is taken to be a precondition and/or postcondition, as appropriate. Explicitly stated preconditions and
postconditions in the Design Specification file are added to anything contained in the Design Data Dictionary.
For example, the variable BKFRAR is declared in Figure 2.16 without a precondition, but the precondition
0 < BKFRAR < 1 is extracted from the Design Data Dictionary and appears below the table of shared

variables.

Preconditions and postconditions for arguments and shared variables can optionally be accumulated together
in the specification, but after some experimentation, the default behaviour has been set to place the conditions
separately, below the appropriate table. This generates a longer specification, but keeps associated elements
at close proximity, which makes the specification easier to read. In some cases (perhaps code which involves
few variables), the accumulated format may be preferred, so the option to override the default behaviour

remains.

Tables are formatted dynamically, so that no blank columns are produced. If no mathematical symbaols exist

for any variable in a table, then that table will not contain the ‘Symbol’ column.

The first major heading in the Design Specification is *"Module Components’, which identifies the Noweb code
chunks that comprise the default code chunk << s >>. This section is generated by TiXspec to include any
chunks specified in the Design Specification file (which are not referenced by other code chunks), plus chunks
generated by TgXspec. The generated chunks correspond to the sections of the document, but the order in
the Design Specification is different from the order in << » >>, which specifies a compilable sequence.

For example, the << include >> code chunk is generated and placed before any executable code chunks
in << = >>, but is detailed near the end of the Design Specification. This is because few readers wish
to use this section, yet it can become quite large. Any declared variables whose Design Data Dictionary
entry specifies a ‘File’ causes the file to be included in the << include >> code chunk (‘INCLUDE’ files
in Fortran). This relieves the user from the burden of assembling the correct header files, as the job is
performed automatically.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(oms)mnivg / (Das)vAnivd - SOATE

(ous)neiva / (Jas)uanivd

AOts puw wite wWood Wsen3eq S1PWv o 903 puv WiE PIER{eAR’

(Tes oM NNNVA ¢ CeslOmsiAmmva)fud - (Jws)uAWIYE

(ws)1varee - (J38)vAmeva

£110104 L31vd o erwswcdod terpes pwe tvixv Sindmo)
-

0= f4 0ma o ang u Aipema A3mQ) ‘U puw ‘ans o) Bpny jo LaEpouued sy
*(9) 900 pun (g)um oinduse?) ‘moy Jrem po LorIINY S4) PUE W) 41)9 Y Sy ey afiur = § Sue()

S+S\» = YA v porengwms g pue wends omugy.

oi!-‘l;oﬁixlli-i!lgoﬁiu;igé

. 44 = YA Ayt 1y susundus) e o4) o8 Unmie
e Uiy Wi ® o3 Jo X o4 01 PP Ed oq o) pouirese) o Wises S|

'(238) D130¢ suo my 100} it Aipoma £30() J0 Sresusduc Breveay | |

-1y

(D3HNNN 1) 04 0 =< 'valoNvd

1934NON 1 LNWTIN 1) 01 0 < ANddvd
e ypUCIWed

Oraswni 1'INWTIN t) o) 0 =< IANMAYD
15 yvang 5 o ‘dvadng

0 < {3dNe

£ 5 4vidng S o ivaldie

" HH0 4
swa? plivesep |0 sl | VNI
Wp>0q o vyt | vl
019y iy vornmdey vert | 15019

i §
weitrl itaeh cul i oDe) hoedes | AMNIVY
upy »ﬂia uot 1"0‘ HNG4Y)
=g ywe daea s e | Yy ing
hopaqenuiind wppeq | MirIdNE

Laall, bl st
C

wopmdond Yoes pengruofes mengay o

?.I.:»I.:.

1 0, Smigpieny) TUPUNELNg BI (BI e EIN,) INPDUES YeRdnp e (IR L3() Sy
UD(INE Ay)0 TREUDS PO BL

isajqeven (NOWINOD) Paieys

(Yaanh watinowans
e (sropminr}

s@depzuy Buyjed

SO0 .v!:!o».o 20900 10d
stwes

32

Figure 2.17: Exampie Design Specification.
Since the product is quite lengthy, only portions are shown here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Only one table of variables is shown in Figure 2.17). There are no arguments to the example module and the
table of local variables is not shown to conserve space in the figure. The table of local variables is similar,
but does not have a column for the direction of flow (‘I/O’). It would, however, have a column of values if

any local variables were assigned a constant ‘Value’ in the Design Data Dictionary.

Two executable code chunks, ‘<< main >>’ and ‘<< darcyComponents >>’ are shown in Figures 2.16
and 2.17. There are several other chunks, but they are not shown. The ‘Module Components’ section of the
specification specifies the content of the default code chunk ‘<< * >>’. Note that this references a number
of generated code chunks and the input code chunk ‘<< main >>’, but not ‘<< darcyComponents >>'.
TgXspec places all input code chunks that do not appear in other code chunks into *<< = >>' in the order
that they occur in the Design Specification file. Code chunks that are referenced by other code chunks, such
as ‘<< darcyComponents >>', which is referenced by << main >>’, are not placed in ‘<< & >>'.

The description of the ‘<< darcyComponents >>' code chunk illustrates the use of mathematical notation
to clarify the specification. Some of this notation is input locally, and some is extracted from shared equations
in .teq files via the \includeEquation{} macro, which causes TEXspec to scan the search list for name.teq
and insert the contents at the specified position.

2.3.4 Structure Charts

Structure Charts form the high level system design abstraction. They are similar to the format specified by
Page-Jones [19}, but include some additional information and use colour coding, rather than symbols and

arrows, to specify the direction of data flow.

Structure Charts assemble Design Specifications in a manner roughly analagous to Data Flow Diagrams
assembling Mini-specs. One difference is that Structure Charts are not layered, so each Module is “atomic’
and is not decomposed. The result is that a Structure Chart can be very large, so support is provided for off-
page connectors which allow the user to break a Structure Chart into sections that can be sized convienently
for publication. [f multiple Structure Chart sections are connected with off-page connectors, then TgXspec
verifies consistency between them using a method similar to that used for Data Flow Diagrams. For each
off-page connector, TEXspec searches for a previously processed Structure Chart with the same name. If
such a Structure Chart is found, then the connection is validated, otherwise a warning message is generated.

Options supported by TEXspec specifically for Fortran-77 display the status of ‘COMMON’ variables within
each module, as well as in the argument list.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The syntax for the Structure Chart file is as follows:

Syntaz of Structure Chart (.sc) file

Chart:
LongName:
Version:
Project:
Subproject:
Author:

Date:
Implementer:
[mplementDate:
Reviewer:
ReviewDate:
Units:

Labels:
EntryPoint:
SubmodelColour:

O chart name in ascii formata

D descriptive name in ascii format for Structure Chart<

D uersion number for tracking history - appears on listings<
> project identification<

O sub-project identification<t

O author’s full name<

Ddate that the entry was written

o full name of person who input this entry into the system<
Ddate that the entry was entered into TeXspecq

> full name of reviewer<

»date of review~<

»valid BTEX units of measure<

> ‘long’:mazimum width and/or ‘shared’«

>,y coordinates in specified units<

»submodel name:colour code (default for submodel)<

> [submodelcolour] <

©{module|d
= [offpage] <
Where:
module =
Module: D Design Specification<
At: DI,y coordinates in specified unitsq
Background: »colour code<
Caption: »override of module long name<
CallString: »z,y:mazimum length<
[call]
call =
Call: > module or off-page connector that appears on this charta
Via: >,y point on connecting lineX
offpage =
OffPage: > name of child Structure Chartd
At >z,y coordinates in specified units<

An example of a Structure Chart file is shown in Figure 2.18, and portions of the output generated by

TEXspec and I¥TEX is shown in Figure 2.19.

Much of the information on a Structure Chart is extracted from the referenced Design Specifications. The
call interface, including the argument list and direction of data flow is extracted from each referenced Design
Specification and placed above the module. if Labels:shared is specified, then any Fortran COMMON blocks
are shown, in alphabetical order, with referenced variables colour coded by direction of data flow.

TrXspec performs some consistency checking between the source code contained in the Design Specifications
and the Structure Chart. If the referenced (called) modules do not agree, TEXspec issues a warning message

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

that extra or extraneous calls are shown on the chart.

If Labels: long is specified, then the ‘Long Name’ in each Design Specification is placed with the module,
as shown in Figures 2.18 and 2.19. If these names are too long, the boxes become excessively wide and the
user can then specify Labels: long:len to specify a maximum width before a line break is used. Likewise, the
CallString: z,y:len syntax allows an interface string to be broken over multiple lines.

Chart: SIMALL 3
LongName: Inventory of All Nuclides Module: NUCINF
Version: 01Aa .
Project: cc4 At: . 0,4.75
sl el : INROC Callstring: 0.5,6:22
Author: 8. Oliver
Date: December 17, 2000 i ;‘f"‘l" So0eCE

. X : .75,
Implementer: S. Oliver call: REPEUN

ImplementDate: December 17, 2000 Background: yellow
Units: inches 3

Labels: long, shared Module: ZAPINT

At: 2.75,3.5

EntryPoint: 2.1,9 Background: yellow

Module: PRECIF
Module:

- ed g 1 - [4
e oo NE callstring: 4.5,6.05:22
Via: 2.1,6.25 Module: REPFUN
Via: 0,6.25 At: 1.75,2.25
Call: SOURCE call: INVTRY
via: 2.1,6.25 :

Via: 1.75,6.25 h Background: yellow

Call: ZAPINT OffPage: INVTRY

Via: 2.1,6.25 At: 1.75,1.5
via: 2.75,6.25 : U

Call: PRECIF

Via: 2.1,6.25

Via: 4,6.25

Figure 2.18: Example Structure Chart file.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—Jea Dve LT LTHRTIT000 e ver §.
CCL ﬂiu‘_'
SIMALL Version 011
Author: S. Oliver December 17, 2000
[Tmplementer: 3. Oliver Docember 17, 2000
Reviewer: none NA
SIMALL
Inventories for all nuclides before simulation of release
TUCIIC| NOCTD
NUCLIDIFSENUC
LD
LIS
1
|
NecHERCCTIoN P ,,,,_A,_L”_‘,‘i‘f'_","f,“,'f‘:’"",',ﬁ
NUCINF ! _ PRECIF
Sector-independent parameter information l Determine values for precursors
CAPICAPSTX OIVIABIIIVTRS SPOUFPIDIFIAL i DESATN IoECATY
CAPMKICAPMR MATAIEINIORY spoLIYIDIDW ! CNVTRN | CIYTRS
CAPOMEKIOLIIR NUCIOEIZNIIR STANUCIMNUC i TCLIDIPaL
CAPDNXIDIFIOt NUCIDXI¥IOIY STARK|NUCP 1R l PREIXPIOECATY
CAPOWU | arsey NRDT |59 08P : neariavre
CAPDNUICAPSAS UCLIDINOPRE : nOTLTELE
CAPONV {OLSEN NUNTZ(DZCA L :
CAPDNT DL F3XY CNTL|ZNATRS
DECAYE [DEcA (3 FUCNTZISUL. X
DECAY |DEEAC PO INEPLE ,
OPLAVTILITRY SPCAPFICIPSFE. i
DPSOLUISOLONN SPCAPFICAPAXE i
e
SOURCE
REPFUN
| INVTRY

Figure 2.19: Example Structure Chart. Input and output data flows are colour coded green and
red, respectively. INVTRY is an off-page connector.

2.3.5 Manuals

For the most part, manuals are simply BTEX documents. TgXspec simply defines the syntax of the equation
(Section 2.2.4) files to be inserted with the \input{} macro.

Further support for manuals will be provided once a configuration management system is incorporated into
TeXspec.

Also. the CSA standard [4] demands a number of specific documents, and templates will be provided.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Graphical User Interface

To assist in the operation of the TEXspec system, a GUI is provided, making the application much more

intuitive to operate.

For the purpose of this practicum, the intention was to implement a ‘simple but effective’ GUI. Unfortunately,
these objectives are not always consistent and the program now comprises over 32,000 lines of source code
in 85 modules. This compares to 8,000 lines of PERL code in 8 scripts to implement the core TEXspec
technology. At this writing, the GUI is in regular use, and has proven to be fairly robust.

3.1 Architecture

The GUI fits into the TgXspec architecture as shown in Figure 2.1. It is implemented as a Java application.
It manipulates the input files, executes the PERL scripts, and handles the output.

The application is distributed as a Java archive (.JAR) file and is initiated by a Java runtime environment.

From a command line, this often looks like:

java -jar TeXspecGUIL

The initial presentation is as shown in Figure 3.1. The
user must identify himself and declare a default project
on which he will be working.

The options presented on the ‘login’ screen indicate the
future development path of the product. At the mo-
ment, the options (user identification, project, and sub-
project) are *hard coded’ into the application and the

*Password’ field does not process input. These fields

will have meaning when the application is divided into
client and server portions (Section 2.1.1) Figure 3.1: TgXspec GUI Initial Screen.

The GUI is based on components provided with Java and two additional libraries;
o ‘Tegexp’: regular expression parser from The Free Software Foundation (FSF)

¢ ‘format” Henrik Bengtsson’s printf package (for non-commercial use).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TEXspec components tend to be small and held in many files. Repeatedly opening a large number of files

tends to inhibit performance on many systems, so the GUI has an abstract class “TeXspecComponent’

which establishes and maintains an inventory (cache)
of components that have already been parsed. A back-
ground process periodically scans the search list direc-
tories (Section 2.1.2) for files that have been updated
since they were last parsed and placed in inventory.

The number of windows generated by the GUI can be
large. A desktop window is used to contain these win-

dows, which avoids cluttering the user’s main desktop

I | with many TpXspec windows and icons. The desktop

Figure 3.2: TgXspec GUI Desktop Screen. The bar window also provides a convenient place for a progress
along the bottom is a ‘progress bar' and message area. bar. as shown in Figure 39

3.2 Configuration and the Search List

Since the GUI is used to create and edit TgXspec components, as well as process them, the search-list has
an additional role to play beyond the base functionality. The first directory (for each file type) defines
the directory in which output will be written. No output is written to directories lower in the search-list,
although they can be deleted. If a component is accessed from a lower directory, then edited and saved, the
edited copy will be written to the first directory in the search-list. By placing a working directory at the top
of the list for each file type, the user can collect his working files as they are modified and move them to the

appropriate directories once the products are known to be satisfactory.

The Search List (Section 2.1.2) can contain a large list
of directories to be searched. This would be oner-
ous to regenerate each time the GUI is invoked. To
avoid this, the GUI allows the user to load a ‘Configu-
ration” (which may in the future contain more than
the search list). This allows the user to work on
multiple projects without having to manipulate the
search list on every invocation. To load a configura-

tion, use Options->Load Configuration to bring up

Figure 3.3: Chooser to select a flle containing a
sanrch-list.

the chooser window, as shown in Figure 3.3.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initially, however, a search list must be built before it
can be saved and subsequently reloaded. To manipu-
late the list of directories, use Options->Search List
to bring up the search list editing window, as shown
in Figure 3.4. A drop-down menu allows the user to
select a file type and directories can be added (via a
pop-up chooser) or deleted using the edit buttons. The

*Up’ and 'Down’ buttons allow the order in which the
Figure 3.4: Window to edit a search-list.
directories are searched to be manipulated. When the

list is complete, use Options->Save Configuration As.. to save the search list.

3.3 Requirements Data Dictionary

Requirements Data Dictionary entries define flows or components of flows which occur on DFDs (Sec-

tion 2.2.1).
They can be accessed by the following methods, from the File menu:

e File->New->Requirements->Data Dictionary Entry

to create a new Data Dictionary entry.

e File->Upen->Requirements->Data Dictionary Entry
to edit an existing Data Dictionary entry (or create similar ones).

e File->List->Requirements->Data Dictionary Entry
to see a list of existing Data Dictionary entries, or generate a formatted listing. suitable for printing
(Section 3.5).

The File->List method allows the dictionary to be accessed from an alphabetical listing. After scanning
the search list for the appropriate files, a window, as shown in Figure 3.5, displays the candidate entries.
By default, these are in alphabetical order, but an option allows the entries to be sorted by project. The
‘Refresh’ button causes the search-list to be scanned for changed entries.

Multiple entries can be selected for ‘Edit’ or *Delete’ by holding down the ‘shift” or ‘control” buttons while

selecting with the mouse. Editing is initiated with either the ‘Edit’ button or a mouse double-click.

The "Generate Listing’ button activates the Dictionary Listing window, as shown in Section 3.5.

Keeping a dictionary listing on hand is a useful method of avoiding logically duplicate entries. Scanning the
39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘Long Name’ column can quickly identify any existing definitions that might be used instead of a new entry.

Since the listing is generated from files
and the time stamp on each file is
checked before the listing is displayed,
the dictionary listing can be slow to

1

I
4

generate, particularly if a long search
list is employed. [t is usually a good
practice to request a dictionary list-

EEEEEEEL

i

L

u

ing when the GUI is started and to

.

keep the window for reference (per-

haps shrunk to an icon).

Having arrived at the ‘Edit" window,
via one of the mechanisms outlined
above, as shown in Figure 3.6, fields

Figure 3.5: List of Requirements Data Dictionary entries.

are analogous to the Requirements Data Dictionary (.rdd) file (Section 2.2.1). Note the support for compos-
ite entries: the 'Add’ button brings up the full list of available Requirements Data Dictionary entries, from

which the desired components can be selected.
The 'New’ button brings up an empty Re-
quirements Data Dictionary entry, which can

be filled in and, when saved, becomes incor-

porated into the current entry. Similarly, the
o ‘Edit’ button can be used to edit a child entry
t cwefficient a fox alpha zadialysis

\algha g R (if there is one).

Changing the ‘Name’ and saving creates a new

Bapixical £fit ceefficiemt “$0§° faxr alpha zadislysis, -
wwed In the caloulation ef of the degrodstion rets pox . .l| Requirements Data Dictionary entry. This is
wmit emfoce axea of fual T

0c_\alphalleft(¢ \rightle

a quick method to create several similar Re-

quirements Data Dictionary entries.

The 'Math Name’ field is intended to have

a preview button, to allow for the fact that

ITEX equations often require more than one

attempt to achieve a correctly formatted re-
sult. This has not yet been implemented.

Figure 3.6: Edit a Requirements Data Dictionary entry.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Design Data Dictionary

Largely analogous to the Requirements Data Dictio-
nary, the Design Data Dictionary entries are referenced
in much the same manner, but the editing window is
slightly larger to handle the increased number of fields
(defined in Section 2.2.2). Recall that the Design Data
Dictionary entry may be mapped to a Requirements
Data Dictionary entry, which can eliminate the need
for some of these fields. Inheriting a *Math Name’ or
*Description’ can save both typing and maintenance

effort.

The *Select’ button brings up the full list of available
Requirements Data Dictionary entries, from which the
corresponding entry can be selected. Alternatively, the
name can simply be typed in.

3.5 Dictionary Listing

01A _CC4 INROC __ parrwatiily of o (oriogonad

0 018 CCs NROC umu -

alghe dose ta rats of fusl eczzvsion.
UYoed te setimets the standazd deviation of
pxedisted csxxseism rste.

- TR

Figure 3.7: Edit a Design Data Dictionary entry.

From the File->List window for either type of Data Dictionary entries, the *Generate Listing’ button

will bring up the window shown in Figure 3.8. This window provides an interface with ‘formatDD.pl" out-

0E

-
-
el
-
"
%
Lo d
=
=
-
%
"
4
>
2
-
:!
-
"
-
5
=

¥ ¥ @ ® w W RN v @

Figure 3.8: Gonerate a Data Dictionary Listing.

41

lined in Section 2.2.3, through the script file ‘for-
matDD.bat’. The mechanism is outlined in Sec-
tion 3.11.

The dictionary listing module is very flexible (see
Figure 2.7), and capturing all of that flexibility
might result in an unnecessarily complicated in-
terface. Some of the flexibility is compromised to
achieve a more intuitive interaction. The available
columns are easily seen and the column width can
be adjusted, but the order of the columns cannot
be controlled. Should experience prove that the
order of the columns is important, then the design

of this window may be reviewed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Process Specifications (Mini-specs)
Process Specifications are required for all atomic processes which occur on DFDs (Section 2.3.2).

They can be accessed by the following methods, from the File menu:

o File->New->Requirements->Process Spec

to create a new Requirements Specification.
e File->Open->Requirements->Process Spec

to edit an existing Requirements Specification (or create similar ones).

e File->List->Requirements->Process Specs

to see a list of existing Requirements Specifications, or generate formatted listings. suitable for printing.

Flows on a Process Specification are Requirements Data Dictionary entries and are shown in tabular form
on the editing screen, as illustrated in the leftmost window in Figure 3.9. Selecting a ‘Flow’ and pushing the
‘Edit’ button causes a Requirements Data Dictionary edit window (Section 3.3) to come up.

In Figure 3.9, the 'Add’ button was used to bring up the list of Requirements Data Dictionary entries at
the upper right. Selecting an entry from this window to form a new flow caused the window on the lower
right to prompt for the direction of the flow (the remainder of the window echoes the content of the selected
Requirements Data Dictionary entry in non-editable form).

Flows can be resorted according to several sorting schemes by toggling the 'Sort’ button.

Note the support for a bibliography using BibTgX. Filling in the bibliography fields will cause the appropriate
BibTgXcommands to be generated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time ter epecitiod uiphe deve ALFNDG

Figure 3.9: Edit a Process Specification.

3.7 Data Flow Diagrams

Data Flow Diagrams are high level abstractions of requirements, specifying conceptual processes and the
flow of data between them. TEXspec DFDs use a modified Yourdon/DeMarco format traditionally employed
by the DGRTP.

They can be accessed by the following methods, from the File menu:

e File->New->Requirements->Data Flow Diagram

to create a new Data Flow Diagram.

¢ File->Open->Requirements->Data Flow Diagram
to edit an existing Data Flow Diagram (or create similar ones).

¢ File->List->Requirements->Data Flow Diagrams

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The fields on the Data Flow Diagram editing screen are analogous to those in the Data Flow Diagram file
(Section 2.3.1).

‘Elements’ on a Data Flow Diagram may be:

e atomic processes with a corresponding Process Specification,
e a child Data Flow Diagram,
¢ a data stare, or

o an off-page connector.

The first two options are represented as circles (often called bubbles), and are grouped together as *Processes’.
They are distinguished in the ‘Type’ column of the ‘Elements’ section of the edit window. Selecting a
process and pressing the ‘Mini-spec’ button will make the process ‘atomic’, create a Process Specification
(Sections 2.3.2 and 3.6) and bring up an edit window as shown in Figure 3.9.

‘Flows’ on a Data Flow Diagram are shown in tabular form in the ‘Flows’ section of the editing screen,
as illustrated in Figure 3.10. The 'Content’ of ‘Flows’ on a Data Flow Diagram are Requirements Data
Dictionary entries.

The edit screen shows the relationship between ‘Elements’ and ‘Flows’ by changing the typeface of the ‘Flows’
associated with the selected ‘Elements’ to a bold font. Likewise, the ‘Elements’ at either end of selected
'Flows' are shown in bold type.

Since the number of fields associated with both ‘Elements’ and ‘Flows’ are fairly small, they are placed
on the edit window and no child windows are used. Valid data must appear in the data fields before the
*Add/Update’ buttons become active.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

texmine Spaciation ef Qreundwatex
W. Malnyk b 22, 2000 OC-LE
E. Oliver ep 29, 2000
e

nches hort

ust\\Sodium-Chloxide\\Concentzations

.00
.00
Calculate\Calcium-Bulphate\Concentrations iProcess {3.00, 1.00)
Calculate\\Minen\Anien\Cencentrations ‘Pracess 3.25,_3.00) _
ut KCASUL. connector .50, 1.00
Ut KW Cannector .50, 5.00 =
input fprion connector i(0.50, 2.00
alculatetiCalcium-SulphateiConcantrations .48
CalculatstMinartAnicniConcentrations .18
¢ 1.0820 N
1.05
st\Sedium-Chieride\\Concentrations (Output CCL .cCL istatic.
ust\Sedium-Chieride\Concentratiens (Output ISF ISF \static

Calculate\Calcium-Suiphate\Concentrations _Adjust\Sedium-Chieride\Cencentrations (CSUL _istatic -
CaiculateW\Calcium-SulphateZConcentrations Adjust\Sedium-Chioride\Concentrations CCA :static
Calculate\\Calcium-Suiphate\Cancentrations ! \Sedium-Chieride\\Concentratiens |IS istatic -

Inplemented by SPCGCH i

Figure 3.10: Edit a Data Flow Diagram.

3.8 Design Specifications
Design Specifications are required for all code modules (Section 2.3.3).

They can be accessed by the following methods, from the File menu:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o File->New->Design->Module Spec
to create a new Design Specification.

e File->(Open->Design->Module Spec
to edit an existing Design Specification (or create similar ones).

e File->List->Design->Module Specs
to see a list of existing Design Specifications, or generate formatted listings. suitable for printing.

Symbols in a Design Specification are Design Data Dictionary entries, and are shown in tabular form on the
editing screen, as illustrated in the leftmost window in Figure 3.11. Selecting a ‘Symbol’ and pushing the
‘Edit’ button causes a Design Data Dictionary edit window (Section 3.4) to come up.

Note that the symbols are presented as two tabbed tables, one for *Arguments’ and the other for *Vari-
ables’. Data flows can be considered to be all *Arguments’, plus those ‘Variables’ that are in shared storage
{COMMON blocks in Fortran).

In Figure 3.11, the 'Add’ button was used to bring up the list of Design Data Dictionary entries at the
upper right. Selecting an entry from this window to form a new flow caused the window on the lower right
to prompt for the direction of the flow (the remainder of the window echoes the content of the selected
Design Data Dictionary entry in non-editable form). While the window is labeled 'Flow’, in fact it declares
a symbol, and specifying no flow direction causes non-shared symbols to become local variables.

The 'Flow’ edit window allows the user to specify preconditions, postconditions and initialising data. Having
the non-editable Design Data Dictionary fields displayed in the same window helps to avoid conflicts or

duplication. The *Units’ and ‘Dimension’ of the Design Data Dictionary entry are subject to override here.

Note the support for a bibliography using BibTEX. Filling in the bibliography fields will cause the appropriate
BibTgXcommands to be generated.

Noweb code ‘Chunks’ are input in commentary-code pairs in the tabbed panes on the edit (leftmost) window.
Pressing the ‘Add’ button causes a a dialog to prompt for a name and a new pair is generated. Because
*designspec.pl’ places Chunks into the default Chunk in the order that they occur, the Chunks are numbered
and the 'Up’/*Down’ buttons causes the selected Chunk to change it’s position in the sequence.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j Evaluece components ef Deccy weLoCICY 1n £CX C8% oRe sectar {SECY.

The coom Wiz 1s asmmed 2 be pazalicl ts i X CompenMC

Sviastumeltnuecion(Bech_sock)6.

The CTMEVLIE TUMEPLST YRlocily IN the TKE
1s catzespondingly waned t be 1a e T2 plame

T . $8C) **2} . Jases 1n tha calcalation of i the deqmadstisn rate yor
[Svaluats sin and eoo of angle betwoon somn axis ond Olaw ' e
WIVIIR - SAREWR(SEC) / SASEN{SEC) . Se \alphailefrt t \righti-\LeTt(fd \alphalletre (ret e}
WEVCES = MABEVA(SEC) / SAERK(3EC) B t)1 \riant] te \alphaii0-(h \alshal$

wnit susfare szew of Puei

e et

Figure 3.11: Edit a Design Specification.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.9 Structure Charts

Structure Charts are high level abstractions showing the relationships between code modules (Section 2.3.4).

They can be accessed by the following methods, from the File menu:

e File->New->Design->Structure Chart

to create a new Structure Chart.
e File->Open->Design->Structure Chart

to edit an existing Structure Chart (or create similar ones).
e File~>List->Design->Structure Charts

to see a list of existing Structure Charts, or generate formatted listings. suitable for printing.

Having arrived at the ‘Edit’ window, shown in
Figure 3.12 (top)}, fields are analogous to the
Structure Chart (.sc) file (Section 2.3.4).

The top of the window identifies the chart and
sets up some page layout parameters. The next
section allows default background colours to be
assigned to modules by sub-project, which is
useful if the code calls modules from libraries

that are not considered part of the same project.

The final section of the main editing screen is

the list of modules that are to appear on the
chart. There are a sufficient number of fields as-

sociated with each module on the chart that a

sub-window is used for editing them. The drop-
down list of other modules on the chart (on the
right of ‘Sub-Program Calls’) allows the selec-
tion of modules which are to be called by the

current module.

Changing the ‘Name’ and saving creates a new
Structure Chart. This is a quick method to cre-
ate several similar charts.

Blownn 3 19 BAlL o Structvuen Ohart, Tha swhewindmce an

Ppr-aiiuey $54492 044

the bottom edits a singie module on the chart.
48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.10 Manuals and Equations

Currently, no support is provided for TRXspec equations or manuals, but these items are present on the
menus as an indication of future development.

3.11 Java ~ Perl Interface

The underlying TrgXspec technology is implemented as Petl scripts, but the user interface is a Java applica-
tion. In order for the user to generate TgXspec products, the Java application must interface with the Perl

scripts.

Both Perl and Java are relatively portable, but
there is no portable interface between them TeXspec
defined in the Application Program Interface Gul

(API) of either. It is necessary, then, to define

such an interface for TRXspec.

The interface could be implemented in sev-
eral ways. [t would be possible, for example, name

to set up an interprocess communication sys- Parame .bat

tem (25, 26] between the GUI and a server ap-

plication which would be responsible for run- Messages

ning the TgXspec Perl scripts. Such a server and Products

application could be implemented in Perl in Texspec other

a portable manner and would be a stepping SCI’ipt pl’OC.OSSGS

stone to future TEXspec development. (Opthﬂal)
Figure 3.13: TgXspec Architecture for running Perl scripts

For the sake of simplicity, however, the GUL from the Java GUL The user asks for a listing to be generated

uses the Java ‘Runtime.exec()’ function to ex- Wwhich initiates ‘name.bat’ to execute the TgXspec script, and
optionaily perform other functions.

ecute a command, which is itself the name of
a script. For each Perl script ‘name.pl’, there exists a corresponding initializations script *neme.bat’ which
the GUI can ‘exec()’ to run the Perl script, as illustrated in Figure 3.13.

The script name ‘name.bat’, is selected to make the implementation as portable as possible. MS-DOS prefers
scripts with such a name, and UNIX accepts it. Although a Macintosh implementation has not been written,
no difficulty is foreseen.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The script based interface offers a further advantage. Since ‘name.bat’ is typically a short script, it can be
customized to perform other functions in addition to running the TEXspec Perl scripts. Since the TEXspec
outputs are primarily IXTEX files, it is convenient to run IXTEX once the TgXspec script has run to successful

completion. A viewer can then be initiated to show the product on the screen.

This is particularly useful in the case of ‘designSpec.bat’, since in this case TEXspec produces a Noweb file as
output. The script can continue processing to generate both the Design Specification and the corresponding
code. The documentatior: can be displayed and the code can be further processed, including compilation.
The sample ‘designSpec.bat’, provided with TgXspec, executes the ‘Floppy’ (2] tool to reformat and provide
a static analysis of the generated Fortran code.

The location of the scripts to be run (both interface and base TgXspec) is defined to the GUI using the same
‘search list’ arrangement used to locate other files. By modifying the search list, it is possible to override the
default processing with revised scripts which reflect the current project, user preferences, or the particular
job at hand.

Output from the processing of ‘name.bat’ is displayed to the GUI user. The display is in three sections:

o Output, which includes both *standard output’ and ‘standard error’ listings.

o Errors, to reduce the possibility of error messages going unnoticed in voluminous ‘standard output’

and

e a button to interrupt the process or dismiss the display.

Figure 3.14 illustrates the format of the display.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\Ofdp_seCA\Config\TEXSPEC\Ver0006\bin\designSpec.pl to produce nowebs
Running noweave to produce the inictial LaTeX specificatiocn
ERO>>noveave aackup: satkwp ALFHDS.2w
[noweave backend: totex -poindex -delay
oweave: Rarking @p
JIRRO>>noweave: running backend: <totex -noindex -delay>
vvdesignipec.bat: Running socangle to produce initial fortran
BERO>>notangle: asrkup ALPEDS.nw I T -LWN
*sdesignsSpec.bat: Rumning cleenfortran tc Zemave blank lines from the FORTRAN
*vdesignSpec.bat: Running tloppy to teformat the FORTRAN
’ Rurning £loppy to generate & static analysis
Rupning clesntex to ceacve tedundant secticns Of the laTeX specificetien

h 13 pdfTeX, Version 3.14159-14f-releesed-20000525 (NiKTeX 2 heta 6}
(ALPMDS. cex(pdeex.cLy)
LaTeX2e <2000/06/01>

nunning backend: <tocex - -delap>
sakup ALMEDS.nw | nt -LAN

Figure 3.14: TgXspec script being run from the GUIL The ‘errors’ are any output directed to the ‘standard
error’ output stream. Noweb sends some messages to this stream.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Conclusions

Prior to the development of TeXspec no CASE tool could be fuund which could simutaneously

produce Yourdon/Demarco structured analysis documentation,
¢ support scientific and mathematical notations,

o enforce ownership of components,

permit sharing of components,
¢ assemble large products from smaller components, and

¢ verify consistency between products.

TEXspec is a fully usable tool capable of producing highly presentable and reliable software documentation,
featuring robust mathematical notation. Reuse of components and automatic checking between products

reduces the chance of inconsistent documentation, which has been a major source of software defects in the
past.

TgXspec satisfies the requirements specified in Section 2.1.1.

The TgXspec tool achieves the objective of offering automated support to assist devefopers of technical
software who wish to comply with the CSA N286.7 standard [4]. Compliance is expected to become a

requirement for licence applications to the CNSC.

4.1 Maintenance and Future Development

It should be noted that TgXspec development has been, to date, a one man show. If the product is to be
developed in another manner, the following skills are essentiai to an understanding of the technical aspects

of the implementation:

o Java, including Swing,
e PERL,

o KIFX, including the generation of ‘class’ files, and

o Navnbh

- LUl

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fortunately, these skills are common and none is difficult to learn, with the possible exception of KIEX
‘class’ files.

The following items are considered priorities for future development:

o Editors could be added to the GUI to handle equations and manuals.

o The parsing of the TEXspec files by the GUI is performed by an ad-hoc implementation based on the
FSF regular expression parser ‘regexp’. In fact, there exists a YACC-style parser for Java. JYACC
could replace the current parsing. This would make the parsing code more compact and easier to
modify or extend.

o Input file formats may be converted to a format which is easier to parse. For example, TgXspec may
be a natural fit for Extensible Markup Language (XML). This would make processing of muitiple
line fields easier to process. Internal flags used to keep track of what field is being parsed could be
eliminated.

o The configuration file is named as a ‘resource file’, which typically retains settings between runs. The

configuration file might be one entry in a true resource file and could be loaded at invocation.

o The GUI support for the graphical products (Data Flow Diagrams and Structure Charts) could be
based on editable graphics, or perhaps provide a ‘preview’ window. Having to process the file to see

the format of the output is not optimal.

o More types of diagrams could be supported, including Object Oriented abstractions. Object Oriented
technology from the ArgoUML {22] project might be reusable for this purpose.

¢ Data flow diagrams could support "control’ flows, as defined by Yourdon/DeMatrco (5, 30]. This dif-
ferentiates between flows that control the nature of the processing from flows containing data to be
processed.

¢ Languages other than Fortran-77 could be supported.

¢ Some allowance for tracing between design and requirements could be provided. Currently, the most
useful link between requirements and design is the mathematical specification of Design Data Dictionary
entries, which may correspond to Requirements Data Dictionary entries, which allows a reader to
associate variables in Design Specifications to terms in Process Specifications. [t would be advantageous
to allow a Design Specification to explicitly declare what requirement is being met.

o The TEXspec system could be divided into client and server portions, with traffic between them over

a network.

e The system could allow installation of files into a configuration management system. Dependencies
between files should be monitored from this system, and security wouid be enforced.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Sample Data Flow Diagram

Figure A.2 details the input required to produce the Data Flow Diagram shown in Figure A.1. The syntax
is discussed in Section 2.3.1. For convienence, the input has been divided into sections, delimited by a line
of hashes. Note that this file would typically be generated and maintained through the GUIL

The first section contains the identification

information common to all TgXspec compo-
nents. W /\

The second section indicates that the posi-

ISP

1433
Sodium-Chiaride
Concmtrations cee

tions on the diagram are specified in inches,
and that the ‘Name' field in the Require-
ments Data Dictionary entries are to be used
to label the flows. Alternatively, the ‘long’
name or mathematical symbol could be used.

The third section specifies the process ‘bub- K\
bles’ to appear on the chart. Note that pro~ "c‘m_—’ Caeatae)
Concmtrations

cesses 1 and 3 are specified to be *atomic’, in- :

dicating that they are associated with a Pro- Implemented by SPCGCN

equilibrium-constants = (ulmt‘}, KCASUL, KW}

. . s . -ion = {spmien, spejen, fprion

cess Specification (Mini-spec), while process -t S, IST}

2 is associated with a child diagram. m} conc_mincranions}

The fourth section specifies the location of Figure A.1: Sample Data Flow Diagram.

off-page connectors. This particular diagram employs a convention placing inputs on the left and outputs
on the right, but this is not a requirement.

The largest section details the ‘Flows’ to appear on the diagram. Each ‘Flow’ in the diagram is defined with
a Requirements Data Dictionary entry similar to Figure 2.5.

The final section contains notes to be placed on the diagram. This is often supplemented by notes generated
by TgXspec to indicated the treatment of composite Requirements Data Dictionary entries.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

008 Aq pejuvess yduy

p« o t3eez301eqw

- 0-
200 112118007\ \ B T10 tYD-un Tpog\ \ 1 {pY
SUOTIvIIEONOD\ \Uo TUY\\JouTi\\®e o {wD
ez

(1N

€5'0

€2'0
SYOTINIILIOUOD\\ P10 IOD- N THog\ \ 1enlpy
SUOTI1IUBOUOD\\ Lo TUVA\ Tou I\ \e3e o teD
oo

[
€'t-
.33-3«8.305!..53 on ypog\ \1en(py

red\\njvmote)
1 24

-53-35..:8554255:38-15_8
11 v -.:/Qunﬂ.u_nw
[

[
€'z
-53-3:8..8/,8:550.!335..!;3

swsogres tDred\\e1vnoie)

-33-35385.!1253:3,3-15.8

suoTIes O\\e3emore)

0o

z'o

(3]

ﬂl
.33-3:8..8/1233.!3/5!“3

teo\\n3enoted
med

st'o-

t

z'0

mes andino

230 TIPIIUecueD\ \nisyd g -en 1o Tes\\e1e o Ted

[1]

Nl
SUOTINIIVEGHOD\ \ SP IO TND-wn Tpog\ \ 3enilpy
SUOTIVIIVBOVOT\ \BOTUY\ \ JOU T\ \ e e O I®D
svotNTOUTE DYoo

sL'o-

s6‘0

£0‘0

suoTuRIcUTE DYoo IndIng
SUOTIVIIIOWOD\\UO TUW\ \JOUTI\ \w3w O T¥D
240 ttrezou rv DUeO

St'0 t1eez30t0qey

tecarey

€0 .caouoluuc-

=0 ndino
SUO TA9I IUBOUOI\ \OP 120 (- an 1pog\\ 3en(py
L=~

1’0
t

€0

481 andano

suo TIR IO\ \ep t2o1yD-untpog\\1enlpy
a8t

st o-

[}

€0
SUOTIVIIUSOUOD\ \SP 110 TyD-EnIpog\\1en(DY
ot sndeg

nt

(1)

st 0-

U0 TIELIUBOUOI\ \OP 130 tyD-um tpog\\ 1en(pY
ydde andug

" 1]

st'o-

]

z'0
SUOTI92IUBOUED\ \UO T\ | 20U T\ \@I¥ RO e
wdde u“n

[]

¢t'0-

L]

1'0-

U0 T1811UWOBOD \UO Ty 20U\ \ e3¢ (RO [eD
ustede Indut

4o rmie

n-.o-

e o
!331.-»..88//(04;/363/3133
be soute Indut
b 20utw

.“"

z'0-

SO TINIUBOUOD\ \SP Lo 1D -entpog\\ 1en(py
volemds sodug

woCmie

€10~
zt'o
L3

tored\\eremoted
uolwmie yndip
wo(ede

[1]

"0~

SUOTIA IOUOD\ \OP t30 TyD-em PO\ \1enlpy
votady ndug

wvorrdy

st'o-
st'o
t'0

200719210800\ \@1wdIng .un 3 (eI \@1e (nOTeD

uotady sndug
woysdy

.'u.-h
taora

tion)3019qe

teogiow

tuorioe Uz

1990 33018qet

teoatew

tuovioe U

108
w02y
taota

11308z 3010qw1

tyeongs01eqeT

teogtey

1Horsoet UL

tymeyy0t0qet

teodtont

tuorioetsug

t3en33010qv
tuoraoe s

taen33010q91
teotroetyuy

£t:0- tieszsoteqey

] 1eog ey
€0~ tuotioetyvl
sUot1v rusouc\ \@1suding .en o (e \\me (noted tog
neet wnduy twoayg
Yo tmors
'y 193¢
med nding ! 30308u0D
- ce'c’y 12w
syotuRIoUTE Duon yndand 1203004100
g’y 13¢
30 Indino t 20300U100
s's'y tag
ast inding t30108uv0)
s's‘o 3¢
mt andip { 10100000
s'0'8'0 1y

Yydde Indut { 10100utle] 4
v'g'o ta¢
ndug c
s't's'o tay
be"zoutw Indug 12010007

$'e's'0 il K

unfmde Induy izo3oeuwed | =
z's'e ta¢
dotady Indug 1 so308ut0D
t's'o 13y
evmt Anduy 1 10300ww0d
oteoye
s'c tay
svorierIuscuod\\eprrotey-mntpog\\ienipy i seecosg
g'se's 13y
SUOTIUIIWNOUOD\\UO TUY\\ SouTH\\eju tnote) iZ essoosg
orwoe
t'e tay
suorierIvecuod\\ssudirg-antoted\\mumotes it esscold
L[] 1o toqut
oeygou Y tesrun

0002 ‘¢z deg JeIvIewmidey

3SATIO mAmlg | Ierewmidey

000 ‘te wma terwg

Waten peg tacqany

oosuY 1 yepouqne

100w t1oefosg

o 10070304

seeapunolp 30 Botietoeds ediuseieg [L1E37Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B Sample Design Specification

Figure B.3 details the input required to produce the Design Specification shown in Figure B.1. The syntax
is discussed in Section 2.3.3. For convienence, the input has been divided into sections, delimited by a line
of ‘%’ characters.

8.1 Output

The header contains the identification information common to all TEXspec components. To keep track of
the components used to assemble a Design Specification, or any TEXspec product, the XTEX files generated
by TEXspec contain commentary that identifies all referenced components, and the version of the TgXspec
module that assembled them. A date-time stamp is visible above the header in Figure B.1 (in the upper
left corner) to uniquely associate the IXTEX file with the associated product. By retaining the EITEX file, it
is possible to audit the content of any product. Figure B.2 shows the top of the IXTEX file associated with
Figure B.1. Note the matching date stamps and the list of components, including version identification.

Below the header is the default code chunk << + >>. The code chunks that are represented by tables
(<< argument >>, << local >>, etc.) are generated and are not identified in << » >> by obvious
association. The TgXspec module cleantezr.pl removes these code chunks from the Design Specification,
since the tables contain a superset of the information in the associated code. Generated code chunks that
are not represented by tables (<< interface >>, << description >>, etc.) are displayed using the usual

Noweb notation.

User written code chunks, which are not referenced in other code chunks, are placed in << = >> in the order
that they occur in the input. In this case << checkArrayBounds >>, << initialize >>, and << main >>

are in this category.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rl L X TP Y Oupufout o8 Vor 1.3

; [INROC
i Module: ALPHDS : Simulate fud release from alpha radiolysis Version 02H
Author: S5.E. Oliver Feb 23. 2001
Impiementer: S.E. Oliver Mar 16. 2001
. Reviewar: T.W. Melnyk Mar 16, 2001

Module components:
(=
{incerface)
{description)
{directives)
{include)
{argument)
{hocal)
{data)
{checkArrayBounds)
(inrtialize)
{mam)

Description:

{description)=
Simulate fusl release froa aipha radiolys:s.

Calling interface:

{interface)=
SUBACUTINE ALPHDS(CALTYP,NT,T2MSS,ALPHRE,CONTIY,OK}

Arguments:
Argument Long Name Symbal Units | Dimension | DacaType | I/O
CALTYP ' call type: "TIMES™ or “VALUES®)] . character | |
NT : number of uimes in subseries 1] scalar ntager | 1/O
TIMSS - umes for user time senes fal . double | 1/O
ALPHRE : refease rate from aipha radiclysss | A éq(t) [mol/a] . double o]
CONTIN . contnuation flag 1} scalar boolean | O
OK . operations thus far ok Hag I scalar boolean | O
Preconditions:

NT: none if CALTYP = "TIMES™
> 1 if CALTYP = "VALUES™
TIMSS: none if CALTYP = “TIMES™
> 0 for (1..NT) f CALTYP = “VALUES™

Postconditions:

NT: <6 + NOALPH if CALTYP = "TIMES®

unchanged if CALTYP = “VALUES™
TIMSS: > 0 for (1..NT) if CALTYP = "TIMES™

unchangad if CALTYP = “VALUES”
ALPHRE: unset if CALTYP = “TIMES™
>0 for (L.NT) if CALTYP = “VALUES"

CONTIN: = TRUE
oK: = TRUE

Figure B.1: Exampie Design Specification (i of 3).

a7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constants (PARAMETER):
Constant Long Name Units | DataType | Vaive .
Max dose rate ts ents for radiolyss | | integer €N
TDELTA | duration of deita fn input fa] double a.nl
Shared (COMMON) variables:

Shared Long Name Symbol Units ~ Dimension . DataType : 1/0
AALPHA | Fit coefficient 2 for alpha radiolysis Ga salar double I
ALFCOF | Scale factor for alpha dose Sa salar double f
ALPHDO | aipha dose to used fue surface a [Gy/al MXUDQOS double i
ALPHTI | ume values for aipha dose rate 3] MXUDQOS ~ double i
BALPHA | Fit coefficient b for aipha radiolyss [] scalar double 1
CALPHA | Est variance alpha Yo 1 saalar double |
DALPHA | Number of data poinzs for alpha dose fit I | scalar double I
EALPHA | Smcistical p alpha radiolysi m 1] scalar double !
FALPHA | Mean experimental alpha radiolysis g i} scalar double 1
NOALPH | num entries in aipha dose ts fia] saalar double |
STDNOA | std normal vanate for alpha dose rate Na(0..) il scalar double I

TCOOQL | effective cooling time t al scalar double I
USURFA | effeccive surfaca area A [m2} scafar double |

Prcconditions:

AALPHA: st

ALFCOF: > 0 for if CALTYP = “TIMES®
none if CALTYP — " VALUES™

ALPHDO: > 0 for (1..NOALPH) f CALTYP = "TIMES™

none if CALTYP = “VALUES®

ALPHTI: 2> 0 for (1. .NOGALPH) if CALTYP = "TIMES™
none f CALTYP = "VALUES™

BALPHA: set

CALPHA: set

DALPHA: se

EALPHA: sat

FALPHA: set

NOALPH: 1 < NOALPH < MXUDOS

STDONOA: sat

TCOOL: >0

USURFA: >0

Local variables:

Local Long Name Symbol Units Dimension = DataType | Note

ALFDRL . dimensionless and factored aipha dose 0 MXUDOS double | save

ALFREL . relative alpha dose rate {Gy/al scalar double

ALFTRL . dimiess time for alpha dose rate 1] MXUDOS double | save
DOAFLG - DOALOG is calculated i scalar boolean
DOALOG ' log{predicted alpha dose rate) log(a} i scalae double
EXPONA : log(predicted aipha corrosion rate) logéa () I} scalar double

I . general index 1] scalar nteger
J . general index] scalar inzeger
MODNAM - module name i [character
MSG . error message] [character
REFRAA : relative aipha dissolution rate [maif{m2a)] scalar double
STOPP ' signal to stop procassing scalar boolean
TIMREL : relative tme fa] scalar double
Data:
MODNAM: "ALPHDS"
STOPP: TRUE.
Pigurs B.2: Exampis Dosign Spocification (2385,

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Moduie Precomd!
ALPETI(1} < tDELIA + TCOOL

This moduls is ussd by SYVAC] to sat up a time series. Far each time series, it is first called onca with
CALTYP = "TIMES"; then it is called possibly many times with CALTYP = "VALUES™ until the time series
is complets.

Exceptions

If a value cannat be interpolated at any particular time because of bad dose-time data an esror message is
written using WERR

if CALTYP 4 ("TIMES™ or "VALUES") NT.TIMSS,ALPHRE and CONTIN are not set and an error message
is written using WRERR

Sumemary
ALPHDS impiements Data Flow Diagram procssses ‘Fuel Dissolution Rate Alpha’, and scales to the surface
ares of the fuel (ie part of ‘Caiculate Total Fuel Dissociation Rate’).

The dose-time reiationship is provided numerically as n, ordered time-dose pairs. The final value provided is
continued as a constant for all longer times. Linear intsrpoiation on the logarithmically transiormed values
is wead for ail intermadiate times. To avoid numerical problems with logarithms of smalil times, the dose is
assumed to be zero far times smaller than the small time TDELTA.

The primary function is to implement the theory manual equations in the 'Degradation Rate of Fuel’ section,
for a-radiolysis, scaled to the fusl surface ares. That is. we ae computing .\ &, (i). Here, the theory manual
notation would have d = a i &, (2) = & (£) 10V,

This implementation generates 3 SYVAC3 time series, and is designed in accordance with tha template provided
with SYVAC). The input and output arguments are defined by the template.

Check the numerical dose-time function that the user supplied in the input file (as sampled parameters). If too
many data pairs have besn supglied then wrils sn ervor message.

IF (KINT(MOALPH) .GT. MXUDOS) TEEN
¥SG = 'FUEL DOSE VALUES OUTSIDE ARRAY BOUNDS
CALL VREAR(MODNAM,MSG,STOPP)

END IF

SRR SIS

e

Initiaiize local variables and the output argument ~0K".

ALFREL. TIMREL and REFRAA are always unity, and are used to resolve physical units of the values. This
asalsts the UNITCK (unit checker) static snalysis tool.
{initahze)=
Coeenn Initialize
0K = .TRUE.

Figure B.i: Exampie Uesign Speciiication {3 of 3.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Determine the module flow based on the ‘call type’. Signal an error if the call type is neither “TIMES™ nor
"VALUES".
{main)=
I[F (CALTYP .EJ. 'TIMES’) THEX
{initial Times)
ELSE IF (CALTYP .EQ. 'VALUES’) THEN
{supplyValues)
ELSE
MSC = ‘UNIDENTIFIABLE CALL TYPE *// CALTYP //
L ?, SHOULD BE "TIMES" OR "VALUES"*
CALL WRERR(MODNAM,MSG,STOPP)
END F

RETURN
END

Provide some times to initialize the time series. The ingut fila contains (time.aipha-dose) pairs in parameters
(ALPHTLALPHDO). These times are offset by the coling time TCOOL. For initiskization times use all the
times on the dose-time function supplied and a number of times around TDELTA where a discontinuity occurs.

Also, initialize the dose values in the dose-time function. by scaling by the uncertainty factor ALFCOF. A
singje uncertainty is appiied to the data for each simulation using the sampled parameter STONCA, then used
consistently (regardiess of time or dose rate) throughout the simulation..

SSSNOTE®®*® This code could be changed to redefine ALFDRL to contain the log(doss). This would remove
some of the aoverhead for interpolation batween points. Alsc, the interpolation itself could be performed by
SYVAC] if the dose-time function were regresented as a time series.
{1moalTimes)=

XL =6

TINSS(1) = TDELTAe!.01D0

TIMSS(2) ~ TDELTAe1.00000100

TINS3(3) = TDELTA+0.9900

TIMSS(4) = TDELTA#0.99999900

TIMSS(5) = TDELTA*0.500

TINSS(6) = TDELTA®0.1D0

0O J = L NINT(NOALPH)
ZF ((ALPETI(J)-TCOOL) .GE. 0.00) THEY

ST = NTel
TIMSS(NT) ~ ALPETI(J)-7CCCL
EXD IF
Zaitialize she dose-=:ac function dy applyiag
the uncerzainty factor ALFCCF and normalizang <o
Covevnnns resove physical ucits
ALFURL(J) = ALPHDO(J)sALFCCF/ALFREL
ALFTRL(J) « ALPHTI(J)/TIMREL
END DQ
CONTIN ~ .TRUE.

Figure B.i: Exampie Design Specificaiion (4 of 3.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Compute corrosion rate dus to n radiolysis at specified times.

SYVAC3 supgpiles times at which the corrosion rate is ta be evaluated in TIMSS(1..NT). The caicuiated vales
are retumned in ALPHRE(1..NT).

The value of logéy(l) = logey (L} ~ Ng(0. 1) 814, i& computed in jocal variable EXPONA.
Muiltiplying by the surfaca area yields the corrosion rats for an entire container.

{supplyValues)=
DA 5 = LNT
Covrnnen Couvert used fuel dose rate to dissolut:ion rate

IF (TIMSS(J) .LE. TDELTA) THEN
ALPHRE(J) = 0.00
ELSE
{LogAlphaDoseAtTime)
EXPCHA = BALFHA + AALPHA=DOALOG ~
1 STDNOA*CALPHA=
1 SQRT (DALPHA*EALPHA® (DCALIG-FALPHA) s02)
ALPHRE(J) = REFRAASUSURFA=10.DOweEXPONA
END (¥
END DO

Evaiuate the log of the predictad aipha dose log(G} at a particular time TIMSS(J).
{LogAlphaDoseAtTime)=
IF (TINSS(J)+TCOOL .LT. ALPHTI(NINT(NCALPH))) THEX
-t
OCAFLG = .TRUE.
00 WHILE (I .LE. NINT(NOALPH)~1) .AND. DOAFLG)
Covrveeennes <f tize is greater thaa TDELTA daterzioe log dose rate
IF (ALPETI(I). EQ. TINSS(J)+TCOOL) THEN
DOALOG = LOGIOCALFDRL(I))
DOAFLG = .FALSE.
[interpolate dose rate values cn a LOGIO basis
ELSE [F ((TIMSS(J)+TCOCL .GT. ALPHTI(I)) .AND.
(TIMSS(J)+TCOOL .LT. ALPHTI(I+1))) THEN
DOALOG = LOGRO(ALFDRL(I))+
(LOG10(ALFDRL(I+1))-LOGI1OCALFDRL(I)}}/
(LOGIOCALFTAL(I+1)}~LOGIOCALFTRL(I))})=
(LOG10((TINSS(J) +TCIOL) /TIMAEL) ~
LOGIOCALFTAL(I))]
DOAFLG = .FALSE.
END IF
l=Int
EXD DO
ZF (DOAFLG) THEN
[oSO Values canno: be :nterpolated
MSG = 'FUEL DOSE VALUES CANNOT 3E INTERPULATED
CALL WRERR(MODNANM,XSG,STOPP)
END [F
ELSE
DOALOG = LOGIOCALFDAL(NINTCYCALPH)))
END F

(A LN AN A

{include)=
(o4

INCLUDE *¥XUDCOS. INC*
INCLUDE *SPALPE.INC’
INCLUDE *SPRADI.INC*
INCLUDE ‘TDELIA.INC'

c
{dirctives)=
IMPLICIT NONE
c

Figure B.1: Example Design Specification (5 of §5).

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S mma)> this £ile wvas genezated autamatically by noweave --- battar not edit it
§... output generated by X:\Ufdp_sa04\Config\TEXSPEC\Ver0006\bin\designspec.pl on Fri Mar 16 14:08:40 2001
S... camponent version

... :\Ufdp_sa04\Config\TRXSIEC\Vax0006\bin\designspec.pl 027

S... designspec 028

... l-/m_mnWm/cuonzmzulmum/uc/uzm ddd 018
s... W:/Eba_shr/IPA/Imp/CC402/V1t/V0204/dictionary/ccd/alfrel.ddd 018
s... W:/¥ba_shr/IPA/Imp/CC402/Vit/V0204/dictionazy/ccd/alfeel.ddd 018
s... W:/Eba_shr/IPA/Imp/CC402/V1t/V0204/dictionary/ccé/alphti.ddd 018
... --/m_mlxn/nv/ecaozmemzoclmw/ccuunm ddd 018
s... /Eba_shr/T¥A/Twp/CC402/V1t/V0204/dicticnary/ccd/doatlg.ddd 018
S... I lm_m/xmnp/ec«zm:mzoo/acmm/c«n ddd 018

... W:/Eba_shr/IVA/Tmp/CCA02/V1E/V0206/dictionary/ccd/).ddd 018

S... I’/M_MMI“/CC‘O!MQMIO‘IM/MM- ddd 018
.. W:/uba_shz/ITA/INp/CC402/V1t/V0204/dictionasy/cod/msg.ddd 013
8...) H /m_m/ru/r./euozm:mzu/mwl:«/-uu ddd 018
... W:/¥ba_shr/IVA/Imp/CC402/V1t/V0204/dictionary/cad/nt.ddd 013
... w /Ibl_ /TIA/Tmp/CC402/V1t/V0204/dictionary/cad/ck .ddd O1R
... W:/Eba_shc/IFA/Imp/CC402/V1t/V0204/dictionary/ccé/retran.ddd 018
... W:/Xba_shr/I?A/Ip/CCE02/V1t/V0204/dictionary/ccd/atopp.ddd 018
... w: /m_m/m/m/ccdoz/vumzoo/uw/uumu.m o1c
... W:/¥ba_shr/IMA/Imp/CC402/V1t/V0204/dictionary/acé/tinrel .ddd 018
... W:/Eba_shr/IFA/Twp/CC402/V1t/V0204/dictionazy/cad/timss.ddd 018
S... z.lu@ sa04/contig/TheorMan/ver0003/Bquations/predictedCozrlin.tag J1A
S... x: /u@_uoc/mzu/mom/moooslmuon/mom.m 01A
8. x:/utdp_sa04/config/design/ver0003/DesigndD/aalpha.ddd 01C

... x:/utdp_sa04/contig/design/ver0003/DesigniD/alfoof.ddd 018

... x:/ufdp_sa04/config/design/ver0003/Designid/alphdo.ddd 018

... x:/ufdp_t _sa04/config/design/vez0003/Desigand/alphre.ddd 01D

.... x./ut@ 8a04/contig/design/ver0003/Designid/balpha.ddd 01

... x:/ufdp_sa04/contig/design/ver0003/Designdd/calpha.ddd 01C

... x:/ufdp_aa04/contig/dasign/vex0003/Designbd/caltyp.ddd 01C

,... x:/ufdp_sa04/config/dasign/ver0003/Designid/dalpha.ddd 0IC

S... x:/ufdp_i _sa04/config/design/ver0003/Designdd/doalog.ddd 01D

... x:/ufdp_sa04/config/design/ver0003/Desiquib/ealpha.ddd 018

S... rlul@ sa0é/contig/design/vex0003/Designhd/espona.ddd 01C

S... x:/utdp_¢ --«/cm/mzp/nzocosmmonum. [} (4

... x'lulq 8a04/contig/design/ver0003/Deeignbd/noalph.ddd 018

S... x:/ufdp_! _sa04/config/design/ver0003/DesignbD/stdnoa.ddd 018

... a./u.!@ sa04/contig/design/vex0003/DesigudD/toocol .ddd 01C

s... -/um 8a04/contig/design/ver0003/Desigabd/usuzts.ddd 01C

\renewcamand(\familydegault} (cmss}
\newcommand(\awstartdeflinemarkup} ()
\newcommand({ \nvenddeflinemazkup} {}
\documsatclass (DesiguSpec}
\usepackage{noweb}

\pagestyle{empty}

\pzoductID(¥zi Mar 16 14:08:40 2001)
\projecti{cce]

\submodel { IXROC}

\title{ALPEDE : Simmiata fusl relsase from alpba cadiolysis}
\authoz{s.8. Oliver)

\version{02m}

\date(Fed 23, 2001}
\implemsntec{s.8. Oliver}
\implemsntDate(Maz 16, 2001}
\zeviewsz(2.W. Malayk}
\zeviewDate(dar 16, 2001}

\begin({documsnt}
\maketitle \thispagestyle{empty}

\setlength{\pazindent} (0in}
\settohsight{\pazakip} (X}
\ndsezies

\newcommand{\sep} (\begin{picture} (100,20) (0,0) \put(0,10) (\line(100,0) (100} }\end{picturs}\newline}
\vbox{

\noindant \bfseries\IANMIE Module components:

\mdseries \normalsisze

-~ N oo Rom the Dosion Suocifontics 8o issod

Figure B.3: Foriion of the 1 file generaiod by TEAspoE/NoWes Hom the Dsslgn Spocificatiss
Figure B.3.
62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2 Input

Figure B.3 shows the input Design Specification file used to generate Figure B.1. Other input information
was extracted from the Design Data Dictionary, as indicated in Figure B.2. Note that this file would typically
be generated and maintained through the GUIL.

The first section contains the identification information common to all TEXspec components.

The second section provides a description for the module to be placed in both the code and the Design
Specification. For the code, Fortran comment characters (a ‘C’ in column 1) are added.

The third lists the arguments to the module, in the order that they are to occur in the interface. Direction
of data flow must be stated. Preconditions and postconditions are optional, and are added to any conditions
in the Design Data Dictionary.

The fourth section lists global (COMMON) variables. The order does not impact any products, but alpha-
betical order is often easier to read. Direction of data flow, preconditions and postconditions are similar to

the arguments.

The fifth section lists the local variables and any initializing data. Note the variable *MSG’ for which the
dimension in the Design Data Dictionary has been overridden.

The next section lists constants used in the module. Values are extracted from the Design Data Dictionary.

The next several sections are free form HIEX. which is processed to the commentary associated with the
first code chunk.

The remaining sections are the user supplied code chunks.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOSSRALALALLLALAAALALALTULIVLTALALEALTALAUBILLAULLAR4000000

anduy
vaansn

o $beb\¢
anduy
“T0004

L1
andug
yonais

anduy
HaTvOR

anduy
VHaTVE

anduy
VRATYS

Sl {HaTvON} IBAD\T) & T =t
anduy
YHATVG

J0¢
anduy
YHATVO

o8
anduy
vHaTE

uBEYIVAL = JALTVO JT wuot

WBEHILlu = JALTVO 37 (HATVOM' ') 303 O gbed\g
anduy

13847V

WSUYIVAW = dXLTVO 3% euou

USENILu = JALTVO T (HATVOM''T) 303 0 $beb\¢
Induy

oanaTY

wSHUYIVAL = SALIVD 3y euoy
BBl = JALTVO J¥ 303 0 <
anduy

40041V

108
anduy
s

tnota
tpeaeyy

11071 TPUcoeLy
1nota
tpeawyg

tuoya tpuooess
1nOT4

tpeawyg

tnota
tpeeyg

thota
tpexwyg

tnota
tpeawyg

tUO T3 fpucdeg
inota

tpezeys

tuo T3 Tpucoels
thota
tpeawyg

100 T3] ypucoexy
tnova
tpexeyg

tuoty tpucoess
inota

tpeanyg

tuot]y ypucoesy
imota

tpexwyg

U013 spUcOelyd
tmota
tpeswyg

U0 13 YpUcoexy
tnota
tpezeyy

SOSLALTTALIALLLLLLLAAGAVAAALEANVAVELAITAALA0000 000000000
.

AL = {UotItpuiocoIsod
andano tnots
NO 1 ttewnBay
‘amiy’ = {6073 TPUcolIsod
andano tnotas
HIZNOD t1usemBay
WBAUTIVAL « JALTYD 37 (IN'‘1) 103 O theb\¢
uSBILy = SALTVO 3¢ U0 T3 TPUCO3IsOod
andjno tnota
TURATY tJuswnBay
»BUTIVAL = JRITVO 3% pebuwyoun
WOBMIZu = JRITVO JY (IN‘‘T) 203 0 gheb\¢ toTITPUCOINOY
wBBYIVAL = JAL7TVD 3% (3M'‘%) 203 0 ¢beb\¢
4SBHIZu = JALTIVO JY SUOU {UOTITPUODeId
andyno ' jnduy thota
SeMIL 1 3UsunBay
uSENTVAN = JALTVD JT pebuwyoun
wEIMILu = 4ALTVD 3T HATVOM + 9 $bet\¢ (UoTItpUooIsoys
WBEIVAL = dX2TVO 3T T $beb\¢
#BEMIL. = JAITYD 3T euou iUot3TpuUOOBIY
andano’anduy inots
N t JuounBay
Induy tnota
44210 130eumBay

S0 RTAERAAHALTATAUAALALA0AAEALLAAULALLS00R0000000000

uvoyidyiosep jeps ¢
‘orekiotpus wydie wWol1J SsERISl (ON3 SIwinmtg
a¢cuotidrIosepy

SRSLERRRERLRLTLOR0CA000000000R0000000000000000000000000

suou
INILNOUENS * LLIVELINOS
sisijorpes sydie w037 Severer (ENg VIVIWTE
1002 ‘9t awmt

shuten ‘4's

t00z ‘2z 2w

aGATIO ‘3’8

100z ‘€z qea

04710 ‘T'S

DOMNT

(2]

1zo

sanaTv

{pawpumy
tebenfuwy

{ owregtSuoy
teyegue taeyd
taone ARy
te3eqIuews tdut
{ 2@030owe YAy
te3eq

tUOTRIGA
tetnpom

Figure B.3: Input required to produce Figure B.1 (1 of 4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SRA3020RTCIAATIAAVFVBLCLL0L0LAEIFITCLLHLEAAL20 4220000000

dees\
spunogAeiIvxoeyo jepy § a1 anx
(44018 * OBH‘ HVNAOM) MU UM ‘TTVO
| BANNOG XY XQISIN0 SAYIVA 3504 ‘13Nd: = OSM
NIHI (BOQMON ‘10° (HATVON) INIM) Al
spunoq Awzzw goeyd*‘‘** b
=ccopunogherzvioeyo>>

‘ebussews 30139 UW 9ITIA Ue) perlddns Useq eawy sxted wIwp Auww 003 I3
‘ {(sae30uwwied perduws se} e173 Induy eyl
uy perrddne Jesn eyl IEY) UOTIOUN] SwTI-GSOP (EDTIGAMU Y3 YOBYWD

oo¢oooooooo“”."
-

‘ojetden) ey Aq pettjep eae sjueanBie Indino pue Induy eys
‘EOVAAS HITA peptAcad elutdue) el {3t eouwpIcOOR UY peudtsep
87 pue ’‘seties swt) CIVAAS ¢ sejersusd toTiwIuswerdmr STyl

‘g {urraa00peioypeadjuorienbgepntour\g

uy deydre\ Arnbe\ pg sAwy prhoa UosIwIoU TEnUwm Kxoetfa eyl
‘ezel ‘${TMHATVI{ItW\§ SutIndeco exv sa ‘st Jwyg

‘weaw sowjine tens el 03 petwos ‘sisArotpei.(geydre\¢)

203 ‘UOtTIDE TN 30 S3wyY UOTITPRiIBeq, Syl Uy sUOTIenbs Tenuww
Kioeyy ey Juswsidsy 03 et voriouny Asewrad eyy

‘N21E0L SwEl TTTWE ey3 UNy) Ie(Iwws Semit) 103 O19X ©Q 01 PeWNesw eF
®s0p vyl ‘sewtl TiVeE Jo swyltaeBor {Its sweigqoad [eotiewny pjoAw Of
‘eewt] GIRTPONISIUT TIR 103 PO §Y SENTEA pemiogsuw:y A{resywyjvieBoy
oyl uo uotrIwtodiesluy Jeeur] ‘sewry 3sBUOT T1¥ 203 IUEIBUCO

¢ se penuyIloo 87 peprAcad entea TRUTS eyt ‘eated esop-swy) peiepio
SiRaTVON) tawe\ ¢ sw A{tevoTasent peptacad gy dIYFUOTINTEI SWYI-0E0P UL

‘{io3me UOTIWYOOSS A (O (WIOL eelndte),

30 13wd ®F) (ENJ Y} JO WeIW SOVIINS Y] O3 EVlens puw
! ieydTY @awy uotIntossTq tend,

sesseccid weiber(NOT4 wIe]d SIUGWS [ANY SORATY

{ {K2awemmng jou ¥ gampun\) 3q\

cooo.oooooooooooocoovoo.c.-ooo.-.oooocoo.oooooocooooo-.0..-..-00"
ow

VUNMN CUYSN LOI3TIN 87 SOESSSE I031® uw
PUY 388 30U SIW NIINOO PUT TUHATY'BEMIL’IN
(uBRYTVAL 30 LBBMILL) $OU\E 4XLTVO 37V

WHIN BUTIN UEITIN ST SONSEGE 10138 UY WIVP SuTI-Se0p P JO
ssnwneq syl avinoyized Auw 3w pejetodieruy ©q JOUUED GNTEA @ 3¥

{ teuorideoxg)eut rrepun\) zE\

.-oo.ooo.cooo.oo.oooocco.oo.oooo.oonooooooooooooo.ooooooooo“""”

‘e301dE00 $7 S91I0S SWY) S [TIUN LBIUVIVA4 = JALTVO

YItn sewty Auww Atqrescd petieo eF 17 eyl ‘uSEiiiu = AALIVO
YITA SOUC PETTED 18373 O 31T ‘seyies el {owe 104

‘seties swty v dn 108 03 COVALS Aq pesn #T eINpow SIYL

(10002 Jaayiww + {wi130l bwayawe\ et\ { (1) r2HATYIUIveA¢

{ {=uor3TpUcOR2g o.:ﬁox.!.auooesz...uu”

SRR LHALLLAATLAALALELTAAALAUGELARALAEA0A0D0ME000R0R000
vi1801 taumsuod

OO tjueysiod
SEAA0050000000SA0000LEA0RLAR00IALAAAB4IACTRINVRARNCANN
TIMIL 1 {eo0n

‘amis 1wieg
44028 t yeooy

yiand t yeoory

Y tUoreveutq
oM t yeoony

+SARETY tw3wg
HVMOOKR t eoony

Figure B.3: Input required to produce Figure B.1 (2 of 4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

senteakiddae zepy)

oa anz
a1 ans
YNOSXTe 00 0Te VAUNSAsVIITYE = (L) NURATY
(Zs o (VHITVA-DOTVOA) +» YHATVE $VHETVA) 2W0S T
SVHATYO s YONGLS T
+ DOTVOGeVHATYY ¢ VHAIVE = WNOAXY
<<watiIyerogeyd [vBo1>>
F gt

0a‘'0 = (r)uRaTY
NEHL (vi1302 ‘71 (C)sSMIL) AT
931V UOTINTOSNTP OF SINT SEOP (ONJ PEEN JAGAUOD* * ¢+ 4+ 4+ o
P S
weooniuaAk(ddae>y>
‘2GUTEIUOO SITIUS UR 303 BINL
UOTE0I100 eyl SPIeTA weaw eowgane eyl Aq BurKyrdyltred

‘YNOdX3 STQUTINA (€00l UT peIndeco 87
¢$i{Borrioopernypesd)uoTrenbepnoust\¢ JO enteA el

IR 1) MRSV UY POUINIET BIW FSIRA POINTNOTED OYL
‘LN’ ‘tieeMIz Uy pejentuAe

oq 03 #Y 931R1 UOTEOIICO W3

YotIyn @ sewyy seyiddne covARE

‘seutty petitoeds 3w
wyekiorpwr gduydie\§ 01 snp ®Iv: LOTEO02300 eIndsod

cooooooooooooo.oooooooooooooooooooo.oooo.o.ooooo.oooooooooo”."
.

SOWTLTERTITUY Jopy)
‘AMIL’ = NIZNOD
og anx TSI/ (C) 12RATVY = (C)THIXTVY
TIULTY/ 2008 TV (L) OARATY = (O} THQATY
s3tun —aqlhﬁ SAOWBI * i)
03 BUIRTIENION PUW JOOLTY X0I0W3 AJUIWIIGOUN @y ‘e]
BSusAtdde Aq UOIIOUN] SWTI-BEOP BYI STFTWFIFUL * ¢+ e
a1 ans
10002~ {£') IZHATV = (IN) SSMIL
T4IM = IN
NEHL (000 ‘2O (70008-{C) IIHATVY) a1
{(RaTVON) ININ'T = £ Oa
0dt‘osva120s = (9)BEMIZ
0ac‘CeV2IEAE = (5)BBMI2
00666666 0sVi1aAL = (p)BEMIL
0066 °0s¥212a2 = (C)SBNIL
0a%00000° TeVi130L = (Z)s8MIZ
0Qt0‘ teW21302 = (T)SPMIL
9 = 1IN
-CCOPMTLTRTITUT>D>
‘seyiee ewy) € s¢ pejuesezdes
S18a UOTIDUN) GWTI-SEOP SYI JT
€OVALS Aq pewzojaed eq pINoo Jiesyy uogawjodiejuy eyy ‘oety
‘sattyod ueeAINy (O3IRTOdISIUT 103 PESUIBAOC B3 JO SGWOS SACESI
pInos s34l ° (esop)BoY ey3 UywILCO O3 THANTY
surzepez 03 pebuwyd eQq PINOO SPOO FTUL vesBlONsss

‘votjernue eyy Inoybnoayl

{v1wx es0p 10 wwy] Jo sseipietea) K(jueINieUCO peen teyy
'YONGLS 10jewesed petdues oyl Buten

yorwnute {Yowe 103 waep sy3 03 petrdde ey Ajurwizeoun etbuse ¢
‘4004TY 2030¢3 Kjurerzeoun ey Aq Buyreos Aq

1UOTIOUN] SWTI-BECP SUI UT SENTEA BEOD eI SXTIETITUT 'Oty

‘8an0oo A3 jnugILoosIp ¥
sIeyM YI1301 PUNOIE semi) 3O requnt ¥ pue petrddns Yorisung
SWFI-900p B3 UC Sewmtl BUI TIV O8N EGuy] UOTIEZVTWEITUT 20

‘170008 ewt3 ButTooo eyl Aq 188330 eiw ssmyl eseyy ‘ (OONATVY'IINATV)

sa10jowvand Ut sited (esop-widiv’ewtl) suywruco Bryy Anduy ey
‘NOTION SWT) SY3 STTIRTITUTY O3 SONT) GWOS OPYAOIL

SR80 LLTLATALALARLAVLSAATAAALARALEII0000008000

des\

Uyww jepy)
aNg
il
41 any

{48028 ' DN’ HVNOOM) MU TUM ‘T'TVO
IuBEYIVAL O uSIMIL. 28 OINOMS '+ T
// ARLIND [/ 3453 TIND FTAVIALANEOINN: = D@

gt]
<csenyepliddnesy
NIHL ((BUYIVA: ‘O8° AALTVO) 41 EO1E
<<EPMILIFTITUTISD
Hane (9BMIL: ‘O3' 423TVO) Ar
=<<UTDS>

CWBEYTVAL I0U L SIHIL. IoyIteu o7 odiy {1e0 eyl Jt 303119 Ue (eubyg
‘10dhky [TED, Byl UO pesE] KOTZ SINPoW Sy SUTWIeIe]

oooooocoooooooooooooooocooooo..o.oooooo.cooooooo.oo.o.oooov“““”

OETIWIITUT JOpY §
0a‘t = TIMIL
0a't = \Wdasd
0a't = THATIY

‘SNl = %0
ezyyEyIYUL‘ ‘"’]
S<CORY[RYITUTD

‘1003 sIsAeus OTIWIE (2eROYD ATUN) HDLINN
oY) SINTESE SYYL ‘SENTVA O3 JO wItun (eoysAyd SsATOosex
03 pesn waw pue ‘Kasun shea(s 81w VMsTd PuUT TIWNIL 1TV

‘uNM0s JUemnBivw INAIN0 SYI PUR FETQETIVA TEOOY @EFTETITUL

Figure B.3: Input required to produce Figure B.1 (38 of 4).

|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(ooauy)Aydeador 1qTay\
{ toe¢jerXreiudexBor 1qIq\
...3.....-3......3.33.:.::.....3...3...:..:.:.uu.”
L]
swiziyesogqeydivtor Jepe)
a1 oN3
{ { {RATVON) ININ) THASTV) 01007 = DOTYOA
w13
a1 ans
(44028 DB’ HYNOOM) METHN TTVO
i QEIVIOSMIINI B 10MNYD SMYTVA 380G ‘1304, = DSM
E.ﬂgsgd 3 Ugs ..n—d.> -------------- a
N3HL (Dravod) ai
od dan3
t41 = %
41 aNg
‘2PIVE’ = Drravod
({{1) TezaTV) OtDOT t
- {11/ 10008+ (o) seM1L)) 0100T) t
o (4(1) TILETY) 01001= ({T41) THLATY) 010071) t
/ {4t daxrTv) 010071 { (T 41) THASTY) 01007T) t
+{{1) TearTv) 01007 = DOTVOQ
nEHs (((Te1) I2HATVY ‘371 700034 (0) BOMtIL) t

‘aNy’ ((I) IABATY ‘10° 700014 (C)OWMIL)) A 3v12
syewq OtO0: @ wo sentea ojws: 80P .uluah.u:n o]
‘EFIVA' = r1EvOd
{{1) ATV 01907 = DOTYOa
NERI (700014 (r)SEMIL ‘O3 *(I)I3RATV) 41
®3¥x 6g0p BOT SUTWISINP VLIIAL Uy Jejwesd ey ewyy Jyr''ttttt R
(otavoa ‘amv* (- {HaTvON) ININ ‘TT° 1)) T11HM OUQ
‘AL’ = O71AVOC
tey
NI (((METVON) ANIN) IIHATY ‘1T° 'TOOOL+ (C) SEMIL) &Y
wccomytIvesoquyd TvBor>>
‘() SmIL ewtl awInoylawd w v ${DOIVOd)YIve\§
oSOpP .ﬁdl gog oYy 20 84 o] eJEnteAy

9'ooooooooooooooooo.oooooooooooooo.oooooooooooooooooooooooo"oﬂ
L]

Figure B.3: Input required to produce Figure B.1 (4 of 4).

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Sample PERL Script

Figure C.1 lists one of the smaller TgXspec PERL modules ‘minispec.pl’. This listing is intended to illustrate
the coding design and style used in all such modules.

TgXspec contains are over 8,000 lines of PERL over 7 modules.

¢!/usc/bin/pers -w

1 [wnispec.sl
¢ lexXspec routine to pracess a "mini-spec”™ specificaticn

4 %o LaTed zompl:iant input file

]

4 usaqge: TIALSpec.El crhoessNumpcer - miniigecTlle.ns

L

[} II0C Ze:m Ll Jer JLET I, Tliverz

P

:

use Cwd;

4... MAKE SURS ©
Sversion: S0 =

-5 set TS The 3lIipt vers.In
... xmep Track Y "he rersiing < (il compeonents

die ™isige: 30 orccesshuater -~ ainidpec.ms™ 1 @ARGV 'w I3 0. .. Ine _nRUY Zaradetoer

4... 3ther global var:arlea: .compns:ite, {compogite-ised
SnCampositeUsed = 0; 4... j.cCal variable IIun™s Ncw nany T=@DasiTe IlTws

4... teclare and is
my(Sauthor! = *auzhar nit tefinea™;

my(€bibligraphy); %... arringes ziblizgraohy

my(SbibTeX) = 0; <.., flag =hat pictTeX biblicqrapny processing wi,l Be uses
ayi{scite}; e,.. 2174Ti0n3 referenced wiTh "hIive”

ay(ScurrentSection) = “*nane”:

ay(ScurrentSectionName) = ~*;

ay($date) = "date 2% efinest;

t:alize .scal rariablies in Tase this SecoRes o Jubroulinie later

ny(8dfdIn} #... 13put flcws for this pIaCess °n The lata flow liagram
ay(edfdinTypel; *... Tvpe Gf Zlcw (sCa iempcral, I the caty Tlow dlacras
ay (@dfdout: ; ®... SUTpuT Ilows It thls orcoess an tne fata ! iragram

a2y (8dZdOutType:l ; ®... nyFe of Titw ‘3tafis nemporal, sk the cata flow toasram
@y (SdiagramNumber) = SARGV([0l;

ny7($formatOptions) = "*;

my(@freeform) $... ger suppiles Tel

ay($inplenenter) = ".agiementer B
my (SimplementDate) = ":zplementlate

ay(@inFlowl; LREuT 2at3 Tliws

ay($nDfdIn) = 9; ¢. .. number Srocess an tRe 23ta 10w tldgram
ay(SnDfdOut) = §: ... numDer nix pIocess SnoThe 1a%ta IlTW 3lagram
ay{SnfreefornBeforelQ) = Q;

ayiSninFiow) = 0: ®, .. number <2 ILnput 2ata flaws

ay (SaCutFlow) = Q: 4. .. number £ output 2ata ficws

ay (GoutFlow) & #... culput fata ?lcws

ay(SparentMsg) = *";

ay (SprocessName) = "°;

my (SpracessNumber) = SARGV(O0]:
ny(Sproject) = "sroiest noT zefined”;
ay(Spwd) = cwd(}: é,.. presant wOrCXKIDG irezsiry
ay(Sreviewer) = "reviawer not tefinex”;

oy {SreviewDate] = "rueuiewlale oo b

ay (Scuntime) >

=y (Ssubmodel) = "sucmocenl nnT zefizac”:

2y (YusePackage) ; ‘... pacxaces “hat are iged
ny(SversicnlD) = "varz:cz numper rnct ielinen

-

&readRC:

Sruntine = lccaltimet);

Figure C.1: Example PERL Module (1 of 9).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

taandiie tag abttge oy terqettha cada geet p

LT $

079048V /0 YY T¢) 3t {T¢IW10400140100DI0U - _aucmwouuw auOkoo»w»

£3101398° ¢°'01030Q8 = ¢
{tND3) 3030 3t
LYARYLAYY A LRIV S
Bt Ut A JU pUd C
taaved « ¢

agte

tupotitradn 1o, ha ubzugsd UOtE10Ad $t 4 - ubzuz¢ HOTEDA¢
agyn

tIDAQNEMOUS ¢ 10AMDUES « ub3Uu3E VOtBIDAS
ovto
t({(2oAqQnEpPTOg 106 10AQNSMBUS) Y
{10AD[Og == 10AMDUS) y It
{10AP 10§ <19AMOUS) y o3
IDAQNSMOUS * 10AMBUE « ub3uje UHoTsINAS
tzg = {1opaansprog) Aw
118 = (19APTOS) Au
(76t 12-¢) LspNi /) 8
! ubjule UOTRIOAS =
124 = (18AQNEMBUS) Aut
t1e = (10AMDUS) Am
(76t12-4 Y ap\) L7038

t1g » ¢
[IRT-AVRY AT WAl AW AN FAAYEE-AVRL AV k7, WRd AWV
76 (4S\) 48 \NOTSHIA ' A \y/ H] /78\LIS\) 48 \NOISMAA 2 \L/ 111
1/2-¢/2-9/11

t7¢ = ivADES) AR
Tousatan Bt oreina agy qab sy Ary sy
oy
(<hi03>I o1 tym
S BIP L Lubtire s, 'NDS) itado
tpattioade Jou, o ubjugs uorsivag
t{abag \amoptina s yebas o ba) atrandut - (ubatgg) Au
1t¢ ~ {ouwenuofivbod)Au
1,6 = (103308) A
t ¢ = lo10)8qé)iun
{7 VMo h A,) \UOTIEnbIOPNIIUT \\/} DT TYM
tuw a1 8131

Untizaent ot enba osdeysp 'y

118 .6 ~ ¢
(AR ANRR PR LA B3}
tuw o 638
nﬂnn
{Qu=0101030gWI0IT013UE 1 1-{W10J801J3) = O]310)OgUIOIODIIUS
f,. = SWENUOTIDISIUGIINDS
1,000, « UOTIDBSIUBIINDS
t1¢ = (ssmO[4INOUE MOTJIINOG
gAnwde HUTTIRE) 10U ““'u £/8.8\(S\e*)/ ~= 18§
tmotgindinne ey (78.8\ (+(8\M\) \motT2andano\\ /) 1ot
{OwmOl9103A0uI0I08I4US 3t t- (2IO4NDL3J) =« O1D10)8QGWIOL0DIIUS
f.. = OWONUOTIDOSIUGIINDG
1,000, « UOTIDEEIUDIINDS
t11¢ = [+eMOTIUTIUS MOTIUTE
ruovde butites) aIputat (s *cu 18,8 \(8\¢')/ ~w 14
tmopgindne ey (7€ 8\ \{s (8\M\) \wotgandur\\, /) 3tete
1788\ \/ -w gtiogi1doilvuiogé ; 3t

cusudo s daowax W

tagtestaap e

$ N L TR

tanytnga iy R}

w [\ *SU0t3doIvHI03é = suoyadorvwrogé
1/ \8\./ ~= stopidoleuizrogd { 3t

suofidoivwiogé’,)\, = suoradoivurogs

wovtg atonbe Prtecon teant il o yoaygs C oy
1t¢ = suopadoivuiogd

R R A Y T A AT AR IR €
{7814 8\) @\t \J0HI04, /) 10
fuy = PEENUOTIDBSIUGLIINDS

t, o - (10f110085U821N0¢

118 = DIPQMOTADLS

ennedr BHTTIVTY pIeMtNTLD il 17848\ S\e)/ ~w 1§
(7614 5\) B\t \BIRQMD TABY, /) StB (P
{,., = BUWENUO{IDBGIUBIINDS
20, - UOtIDESIUEIINDS

11$ = 10MBTADLS

canvdr BHITIVIL 3eturts 0 £/6BAIB)/ ~w 1§
t1omaIany Y (761 4'8\) B\t \20MDTADY /) 31910
t,, = OWENUOTIDBEIUBIINDS

t,3 w0, » HO§3IDBEIUSIINDS

114 = oivgiusustduts

sarsde burpivry ajeniui s ot 1788 \(BV)/ ~= L8
{78180\ s\t \OIUgIMOwD (dug /) J IR
1,4 = SWONUOTIOAGIUBIINDS

tuonen, e Uofidegitetansg

16 = toiluoueidure

gunudr BUHITIR1) Bavutwile P e 1788\ (B\')/ ~w 1§
{/7¢04'S\) 8\t \203u0totdui] /) JES LD
t.. = BUIBNUOIDBGIUGLIINDS
t.onct, « HOT1D88IUSIINDG
11¢ = BIUp¢

R LAY EAT R FARL I £
1781 4°8\) B\t \BIVA. /) $1BT0
!,, = BUWENHOTI00§IUGLIINDS
t e, w HoPIDegIUeIINDS
114 « tofjInwg

susvds DUtrtvey wgeutuitn 0 £/7848N(B)/ s 1§
tiotany e {781 ¢*8\) B \TOYINY, /) JTETD
t,y = OWENUOTIOPSIUBLIINDG
¢, « HOTIDBEIUSIINDS

11§ =« (epouqned

tia e 17880\ (B\')/ ~= 18
(7614 8\) o\t \fopougns, /) 318te
t.,, » BWENUOTIDBEIUBLIINDS

¢ W w HOTIDVEIUBLIAINDG

114 = 190(0ad¢

encede HUtiie1l aleutuile 0 176 8\{8\s')/ = t¢
taneleag c e (76 «*8\) B\ \1D08(023, /7)) tRtR
t,, = DUUNUOTIDOEIUSLIINDG

1,611 - 4Of1D957UB12INDE

1ATHOTBI0A¢ « ,adgiityil, UOTSIVAS

{14 = diuotvisad

eanods Bugiiviy agentut(d a0 2264808\ ') 7 ~w 18
tHeredes Ctty (7604 8\) 48\ \UOTRIBA /) StRTO
f,. = DUWONUHOFIOOGIUGLIINDG

.00, =« UOTIDIEIUSIINDES

116 « ouvnNssosordd

canvds Duj(tviy ajuwnatis 2 n 1788 \(B\s*)/ ~w 18

imenyney ciiy (76 14°8\) W2\ \gead0Od, /)2t
{<NIais>) atium
atry andur agy peas 0y

frigttesy aju
tavnrcg g

en~ede Frarptery nqe
LR L 251 ey

enntdu D1t Ie) o)y
tragownng M |

(@ Ot o).

& PERL Moduls (2 a5

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sana g d tuoNEd ., MNAALS Jauged
{, st e, U edAtegasordpipg) it

RS LTI L TAITE R S I

lowepssoD01ds ‘oueNsE93014PIDS
tneess geasstd dadetinry ~1 0., generd (d4q PRUTIEE IoTHMVY ..,
W3ale Jaugad s
{owopNegaso1d¢ oUf SWeNSROD0LIDIPE] St
11 « punogsiquugssescsd¢
{1oqunpeesdo1dé bo toq €9201303P¢) 31
tgg = (odAiweos01apipe)in
126 = (owuNEEBDOIIPIPS)An
11¢ = {toqunpeesdolgpipélie
(o) trowwiti\ (') t\ssedordl\ ‘**\» ARL
{t=weotqqngesasosdurs) 3

(761e%) t\ndR11\

10 = sMmO3IvIVAUES (/¢SmOt3 WIVP JO PUS N\ /)t

{1 = sMotiviIvgUte {/7¢8m013 2P APIP A\ A\ /)3t

tp = go{qqngseoso13use {/¢v01018 wawp vowid ‘**\y /)2y

11 - sotaaniesasorduyd t/¢nataqneg seadoxd sserd A\t /i3t

e -
(/1) vo td*pip Aq peivisded indito

g Uoteseng
EALARAUNYAP)]
telEs) DT IYn
10 = (smotyeirequis)An
1p = (punogstaundesonords)Au
to - {sataqngecososgute)Au
(1uh 3¢ 'HE) usdo) 1y
Pl Ltugg e, ot raandut « uzg
[FARYARYZ S TN P 11
fate Anir, - U3$
st iy
t1oqunyeRsd01ds « ¢
4 pared 1) ocaar fey

Bevs 51 pavbel JHOUItA 3178 N tmotdInog (ag) ot duy (wgiot 1198 « mOldInog
BEps o) tiehar o JIrR C ety tnotdtitg (ag)ot dur (vdixf 11o% = mMOTIUTY
topta geotaageidie o emspy sty At iy

toieps = savgilewsdugs

11oyinvg « 1oitsws(duts
{Louutiay 3oy Jetdesstdur, be 29iuswsiduté) 33
tetfane ~y eytnelar saiinuntdnt y
t,nnutgap gun toaguny Untetan, boa QIUOIRIBAS It uesitrbur tucielns, op

tupautyop 171 tapougie, Lo {opowqnsg 2t . peitvhas ¢ papougng, sip
turoutgan 1953 1oatord, ba 1safoxdg gt ,ratrirbar tyralnig, atpe
tupstrgnp aou aawp, be siepg gt ,pattnhst tatwr, atp

tupeutgep ou gtoygne, be toyined s eeatnbulr trsyany, otp
poptnosd eem ndur fvmgut, 31Pyy BIng BNbm g cqoadn

peYnt toag ewy jnday ooy

t, o ~ [utogss13y wrogearss
asta
LA\ /1 99 T¢) 31 (T¢)W10490149310020U » [€103901)F Wi0309134

1781 31 1mey
t{antiasot

P puwtye wede g

tu. = ®i0jeds
VoSN /1 %Y T} 3t (T¢iwr030013011N0I0U « (WI0gOR13Y WiO 0OL3E
{ ¢‘viogeqt w» ¢
setn
- - -"¢
VemA 21 99 T8) 3t (T¢lutogonrgniindiot =« (Wiojeollg wiojoolle
1103j0¢: "¢'ot0joqe = ¢
tdatoys
(RF G FLLIF R
PU Y teIna §n pus 0y
tonveg « ¢
! wBets

. be outuge uotsivag 3t ¢ « DUIUIE votwisad

ogta

130AGNEMDUS 10AMDUS = DUTU3$ UotaoAd
oste
t{{{2opqnEpiog 16 1oAqnEMOUS) 9y
{19Aptogunaopmoug) } (I
{1opptogctopmaug)) 3t
10AYNEMOtIS 10 AMOUS « DULUJI$ UOtsIBAS
126 = (Ioagqngpiog) Au
tt¢ = (10Aptog)hw
(7 Lig-w) {epA) /)38
t oULU3S UOtsleAd = ¢
1z¢ = (1oAqgrigReud) Ay
f1¢ « (topmaud)Au
Lrstiz-v Y ap\) L /) 38

118 - ¢
(O IR AVEY AV T TR AN AR N JANIEL-AIRY AT T WA R A
J¢tagr)smANOIBNAA SN2 1) JeN(R) 48 \NOIBYIA P 0,/ 131
1/2-V/t-0/23
17¢ « loAvedtAu
1oessan prodanteran agy gebe o Aty g

(<ORYstatIym
Faanditt 1o cywptre sy tade aon prena, atp || ,outnge s, PoNtluedo
tupretptoeds oy, « DUIUFE Uoteteng
IDUTUSE B- | J1 -3¢y XaLadeeU\L pUTE U prhes, 8P
1oUtu3e o« | gt {.v21° 0 ‘ou1¢ Y cu, jottaandug < oujulé
toUrU3e o~ § 3t (oUY$’ ew, Jorraandut « ouguze
touguse 8- | 3% (xeath toutg e, lettdandul « oliguzg
£oUTg vu, taT13Indut » otifulg
16//9\/% ~= UL
tig = (203J0¢)Aw
t.6 » (930)0q¢)Au
114 = (oupg)Aw
(7 M1 A A) \us\xozapntotrAN/)etym
(IR L
T AR(e

Hetitestty Yoy 0y

1781 3t 1wt
1 {NO@) orOtD

tuu = ©i10j0Q8
toetarsgjyabuot Jt 130¢ « {W10J00139 WIO40913¢

t1T¢'vt030qé)wI04001301I0010U = (1104) AR
»ete

Figure C.1: Example PERL Module (3 of 9).

70

ission.

ited without permi

ion proh

f the copyright owner. Further reproduct

ISsion O

Reproduced with perm

.MA140 49 Putog 1ot L0 134 MOT4INOg

fu woty o andito tontinys . Lt Bediusvdg « Bmntazedg 1t = womot3$
fL L] Mo punng 10t 0 138 MOT4Ined . Mot andann toNDbYM., ¥¥3ALE 1utid) { jusuodmood be wotsé)31
{s11eodmorpunos |1t)
:uig’»l
| {motaIncd) wotz¢ Yovezoy
tievt { (nora4) Au
11 » ®3ys0datogpuno}g 10 = (MOnOTp¢)Am
ttioefozdg’ 38 moTiinog’ IT4 IN0PIPEI D1 Teodmod 108) 31 ! {roeCoxdy * (ve) InopIPE) matuetodmsc (v 108 « (1ueucdenc)) i
{4218 t NOPIQUE>IS ¢ O=T8) 103 } tesrs ! F0003quE>TE ! Owig) 203
PoAtOea? ‘lona ery 31TEadier 1PYY MqEITPUL tentood ‘'R 1) = (83Teodwolpunog)Aw pedetute Byy Ut Jusessd oq PINOYY @40 WY1 U0 sMotl ndyno g
4 Y uc Sytsodnos v Worg vt jed Moty {s3tvodaonuggi iy
[
[}
tasvy t u\osdettitw tt pUtos 104 Juosvd wory
10 = s3igsodwonvig ‘tre)uIPIPEt. KOT3 .::.5 .oz.z.?:. C 8
t 138 notdanog be |t1¢ noeIPsl I d¢
tsssé 1 Inopgaus>ts ! owid) vy t{rglupIpe ‘Lu\sedetutw U1 punos jou jussed wory we xo: -:L:. .uz:e?x..
qdd B3 Un esitecdwon v Ul Bt MoT) YeIRStpul Neelocd ‘'l I = (eatsoduolstél A wiEdls Jiupad
(4438 tnotdanoussss ! 0e3s) 10) | (mosotseilzy
de) #4340 By pipnode cadetitte ey e wmepy gredgto g t
| tyswt) {wosorsd) st
'
!
tyeey
faunadg ue T1 vy Lt 134 notauty 1t = wONOLIS
fuommtg o HYMe oL tBeHINsivdg o Budiuosvdg 1 { 3usuodmoog be kotz¢)31
Fadytdn o ey 0w Lt (38 MOTAUTE S, Hots andur fadiNeYM G, WeEdLs duttd [N} dmoo§f 3 dmog i 3
{s1tsodmospunogéil st t {sueucdeong) e
| {notaurd) Hot3e Yoweros
! {norzg) A
tyeey 10 = (Nomatsé)Aut
11 = s1produospuncse t {aneCo1dg * (14} uIPIPe) Frtetolmoo Lty 308 w (Jusdoduony) Au
ttioefotdg! (3¢ notaurs’ 118 vIPIREIB1twoduos™ 1081)¢t 1 tesse | urpscudsté ! owvéizos
testg 1 Utpraugste # oete) 10y vedsttite i3 Ut jusesid eg PLNOUe QAd WYL 1US EMOty dndutr ¢
peatnent dnsg evy sitsodiues ey fege t ‘tespoct cc 0t » {eytrodwospuno)) Ae
W ungg He opreo beo LR AR L L Ul R I] {eitvoduonetg) 11 ! {ng)esoto
weaBeip not3 wivp eys Burpes: peyssuyy -y
I
tiset |
19 « s11vodeoneie t
t13¢ motduts be 118 uIPIPS) 3 14R3g = (4 ¢ ¢
testd ¢ uipzauests ¢t o=t} 103 ~llco - -uéunﬂzugao
satendiny v At et Mol e wnirotpat ueagang o il « (s3teoddopete) Au it d. be woxz¢
{4038 trotautug>3s ¢ 0=3¢) :; weibwip susied bo sewcord ::u 3o aIno wKots
411 M1 ta e pinnte cadetite Ay e emot}]
taR3g = (+sugp3aue) sdhaurpspe
tweug = furpraue) HIPIPe
[} d. be o34) 33
wvaBetp ..ca.:& uo o‘.ooum ‘:.u ojUy wnot3 'y
tur\radatare ut pereg 10 tusted so1g ¢ If$ INOPIPS 198 » (dR3¢)Aw
‘e motg andano tagtmivn. ‘L tBeHIUSIVdE « BeNiusyvdg 164 = (wwug) Kue
t138 Inopsps ‘.urooderitar iy punct ieh yusaed wotg £ «atd INAINe POHINMYM 1zg » (o3g)An
MMzaLs 3Iutad 11§ = (woxzg) A

ixoMot13818 31 bot/8te) A3ty (o'} \mwwul\ (o‘) t\o3l\ (o) i\wozzi\ ‘\'\'\e /3y

I (snotaviegure) 3t

tiawy {nonotsst s t
t

taewt t
{ smwgeveco18pIPe

Figure C.1: Example PERL Module (4 of 9).

71

Ission.

ited without permi

ion proh

f the copyright owner. Further reproduct

ISsion O

Reproduced with perm

t (g10300238) 111U
! {p mroqes23$ 1n0 1rid
{s4ts fOlm10J0gUIOINNLIUSSTS 10=T8) 1O}

PN adue 1ot Saenhodargany et oy, 400 uyd
Pah fetean ey Pr0eq\\, 300 dut ad

tubarit gap 10 @ledrAsinel, U SI1PQASTAGLS 3t
LYY jOdegmatant s JuirdnetAsI\\, 10O 1t 2d

typecrtgar 10U tumsjael, U teAetA®lS Y
Wi\ 1BMEAdIS Yuns AR\, 20O WL Td
I\ e e pdat 4)8 1w reze fdas A\, 20O Ut 2d
tutty tteyimustotar d biquecetdut \\. LNO Wy td
L1\ (earpa 1oien\y, 200 rpad
£, 1y WOt e taag IHOTe1aA Y, 2NO WY d
oty (Ao nes Jroane \\, 200 Wt ad
Foun fomenecs - 0lg tequupeenyo1dg a1t 1\, 20O 1y td
LN A sposxpiu g J{ojoexgre y\, 2N0 it sd
taun ttoete s arelaadyy, 400 wtad
1.3 fewiauneg hitasnvoadiy, N0 Wtad

Paunonty wuwpeg wio vt s qe ydwshosvdiy
s dtywait fusvgyy iy frdiyetedyy pygibue gy « 400 Wwirsd
futtangde thw tvd o paspt ayy g -

e otvuan Iy Ivpetenar tedyy g yabua tianyy, 100 uzanﬁ
ey 1 adao 1atA1eahedy\, N0 Mt rd

tu'th Koaye 1, teopadog s, afivyedusiing, LNO 31911d
t Aoxg sbBwyoejeeng « (euotidog)Aw
t7¢ » (Aoxg)dn
{ {eBuysedoena) shey) ydvetu}
$.0\ Dreddtutp 1, *suot1dOtvw1088 ¢ e dr - Limmtidop\\, $NO 11

t 98 HOtRIBAG’DS 12, . rtai. 40O $aMt3d
{{noget0as cAox)r20¢) 2§ t{ovoi10l
o tadectite, UOTEIEAS siotepn
fouraddti, Uoteteagt, code s, el wacs S ie 300 $ugd
t 06 UHOtEI0AS ejaten
t g uotwseaslgs e, Tetiie 200 Pugpad
tLungot®ion prruaodae s Crrive 100 wupsd
tLu\smttutie U 04 Au peivieust gndite c iy, N0 ugad
faandine 1eg g1é tadsy ot tphur, eip 11 G4 wL tLN0) usdo
ftauny AT ven, fea jettdandine « uge
(Y ARYARYZ T
{1ecEmpses301ds « T8
Attt 1edine wniet siptm ooy

PTg 03808 3t L4 1 aaananger Sudethor patg Py ou pivna, eip
tte310s) chey)yyoveto;
SUOTIPITY DeafusslUt tu] I0YD ‘e
tigig)esoto

scto
t T¢ «» tAudeibytarap Ayderbiiatas
PUNG Usey avif wotintagor srydetBorgaty teyy Getg <8 1t - we3jurg S1yng
{{t woaturg a1gogieretna) 9y (morfuyd))3t
oxte
IR L]

- 10 = wa3juyg
17¢ » [Audvibyrqrap Audesdiiqas
(7 \os\Auduaboytqiaona e\ \,s\bus\\ e\, /) 3t
fiiporteInd) 9y (weagussd)) 3t , IVudvabotjaigea BUTbey\y UL 10U BTR, etp
178080 V] AL) VeI T) VaeNemitatd\\/ 3t t6 - weltutd
r sEte
t7¢ « jAudeidyratas Audeidiiatas
i1t « poilveisg
{7 \ie\AydeaBoriaraeya e\ \.s\utbog\\.e\. /)3
P et tna Jo pue ey
1OAVES = ¢
syta

tretgiwie ey, be a1gusd uoseieas 31 4 e uiguls Uojeleas
sute

11OAUNEABUS ‘ 1PARBUS = QIEtils UoTeloAd
sets
tLt{1oAanspTO¢ 16 IsAqEASU) 99
(1eap(ogeatopnoug)) ||
{1sAPTOS c1OANSUS))y 1t

2OAUNENBUS ‘ 10ARGUE = qittss Uotsiwag
tz¢ « (toAqngptog) A
118 » (10AD(OS) Aw

(/8¢ 12=v) L4p\) L2130

! qiduss UoTHIeAs » ¢

128 » (10AQRERGUS) Au

11 « (2spnetig) Ay

t7¢t1z2-v) tap\b 70 3y
it = ¢
(B IR AVRAAY YRR AV AN] fentegh)reanteN/ |1
/¢ tag\} s \HOISMAA 0N/ 1) \..:.n::,zo:..u?."v«\‘\
=N/~

17¢ « leaveg)Au
1re1iry tf Metetea syl deh o3 A1y iy
(edttds) ot fyn
to = (hpertvreg)in
10 = {wortusg)Au
tutatroade 1o, = qraulg Uaterang
taandis 1 cvtguge sy dndo At ptnns, etp (| tlatedis-, ‘aid) dodo
TAIgUSE @a | J1 LvecsenMsinfu] (1Y) 10U P, eip
t(, a3 vosuotngey, | (ta,)epdandut = qiguze
toriea) waduinimd 1) Butgiery gulet1a cuoahty et wiis\\, ¥dIdis utad
tixogatasi) vy (0cloagan)ulon))t
Aglvibot il syl tof caulte1u3er Yl UL fwes oy

fuen andgtise « tngempecesntd pd taheen, oyp

agye
.08y Aongeteynn to] PURCD 0 HEg srrletg A0ty vand oMY 0,
‘Bapateseds « Depfitereds
f uns e Aaugasieues 11 funey gy Uge uethrtg mefd vkl toi] VM o
¥¥adis uyad
[13{]

Figure C.1: Example PERL Module (5 of 9).

2

ission.

ited without permi

h

f the copyright owner. Further reproduction pro

ISsion o

Reproduced with perm

taisvy
1t - posnApeastes
(1eivdg ba (3¢ pesnoirtsodwose) s
tssrgtposnorgsoduodtdsrgets) 10)
ty = (pospApeostes) A
t{rg) Aut
{punozgl gy
tl108(o1dg iprTYog ‘1tiouodutong) 81 180dwos 196 « punojg
{1untedg su Jusuocuoss) 3y

(&) dutodg) 1 ditod$ yoesroy
Mty nyteoduay o BoaTouI] tphel mpndnddur s oty (punojyét st
It » punoz¢

PLIY9E . 'u 3u02vdg posneltsodemng
(posAprorteei) 3y

pogn et 1uInodwos W tl -
taueavdé « [+spogpeijsoduosu¢ pesnoitsodwosy

taseg
1t - posnAprarieé
{1ueivd¢ bs |14 poeespoitcoduodg) st
tsstgtpasnalteoduoyusstsionts) 105
10 = (poepAprostes)Aun

Urg) Am
{PtIyos Lo uadodwong) it
{1 fwoog) 1 {fuwos$ Yoee10}
pUno g teeg sou Mot sitaecdun 180) g8 wstRut Uvetong g 10 w {(punogé)Aa

t (1uouodwoog) Au
t{ivefo1ds 1uvreds) e1uouoduwos 106 = ausuoduwosy Auw

wealvad ouy vt usunbiv puosvs ‘g tagiys « 109(ordg Aw
sweU ANty sul 24 ttioumbre 161ty 132148 » PLIYDE Aw
poynoyn ag 01 sitdodwon sy st jtsumbre qetyy Ccca figtye » uoreds Aw

o1tcodwas” 196 qne

oty ortandnen (Appetiuaind} v o ahesn Agtjuapt o3 auginoggee @
HUURNRREAURROURA R RRRRR RN NP BUN BN BB U RBERA P RIRY BB UA NP BN WU ARRB N BB NR
t{inoyessotn

Forty ftasaaoop Jpus gy, 100 autsd

ttAydezbiiatag) 3y 1ys
! 10 Audezbyraias Lno aupad
tAyde2bytqiqp) o1 tum

! {(u20409138) 13 14s
t |0 w3039923¢ LNO wuyi1d
{6i104001 39191 1UN
toc<poenoiteodwolug 1 ,uy iyt o ladedanyy,, Lo 1utsd
fLung \eov s\ $0O Futad
Pt ¢iyabuny =+ YrbBuesugle

$7¢ L I\E, \EIT YRy, 1RO Fautid

16/ 1\\\/ \/@

187 1IN\\/ \/8

167 \\\/ \/s

16/ \\\/ \/¢

167 \\\/ \/¢
1justodwodqned « ¢
)

T L T TrIRe Iy QN0 3y ed
167 I\\\/ /e

18/ 1\\\/ \/®

16/ \\\/ \/s
16/_\\\/_\/%

1677 \\\/7\/e

tausuodwoqnesd = ¢
{t 1uvuodwopanss‘, ', I1¢ posnvItsodwodt pesnoateodwosg)sisina) 3y
ty'y « desg
i asi®

1o = WiBuoteurté
fu \\\\. 100 utad
(gocyrbuatourts) 1
idee¢ tno Iutad

{1usuodwongned) tusuoduodqnes yovesu)

t {3usuoduopgned) Aw

1717 111ds » {1UeUoduodgned) A

t 11¢ posnoitsoduodd si1ttodunod « ¢

t » (dosg)Au

ths {"¢iyabuet « (Ha6uafoutts)Aw

P76 unceraray oy BNE L PLIXe IS AUy, 400 Jatped

167 1\\\/ \/8

167 1\\\/ A/

b, \\\/ \/¢

D) \\\7 \/¢

1B/ A\ T8

tt1onlordg *i1g peapaiteodwosg ‘,bung,)teqerT 106 » ¢
tedte tpoepoiteoduwodUgsté fowts) 103
tbeHiuotedg Jno utdd
Cutyseys AoUs19tkUoD Ju BafHeel 'y

¢ ggauadas Allenl J1 o ypate outy K

oy tutecn aovdvany, oo autdd
[FURRETREIE TN T EANYTRE TR R STRRN W Lno augid

teatung ‘roquAed ‘T¢ ‘LUANMAY T YN S SN GAR-E\ Y\ Si, 100 Jautad

1B/7AZANNV/8 1877\ TA/8 L {TE MOTaUTE « 6

1677 \\\V/A\\V/€ <o ToquiAcs

t{1oefordg ! 11¢ motiUTS) EITUNTOQUARIOB w (S3TUNG ‘toquAné)
(eetgimotIULUgsTElgusd) 10}

featung ‘toquksg ‘T4 ‘L UNNAAL M YN K 9Ny GARLEN Y\ Rey, 310 JIu2d
1670/ \\AV/8 1B/7ANN/TA/8 {18 motaInOg - T8
16/7\\\/A\\\/® <w togquheg
tt1oefosds’ |14 motaInog)vItunioquieled « (eatung 'toquiet)
(4416 tn0123N0UE>TEL0m18) 103
T T O N [P S U CE AN I LR R R UTL [ERN N 2
fw BoquAg dunsy v {Braviaea ada A\ LU 2]) {f Mum oot 1wy, 300 ugid
L uasEyuNy ool biteinge) httbaayy, 300 1utid
By g o povdeayy, 100 1utdd

funuy, 2no utdd

-

Figure C.1: Example PERL Module (68 of 9).

73

ission.

ited without permi

ion proh

f the copyright owner. Further reproduct

ISsion O

Reproduced with perm

133148 = (199(o1dg) Am
ER TR LTI {toqetg)Am
s1tuntoquigist aue
atf) Atvuoriotn riwd s1dawsiinbon ayy agfed o) @
SORPEO NI APV IS IR IR RN IRO NN ANIRNRISIR RN R NI

13eload sy st pusumbie puuves)
suwtl wiwpr oy gy st ismmbrv qe11) .

t{tvAIR2@iusnye:
towetg « fsseiusuodworué tvAaleig

tits proys « jsisiusuoduwonug tvAIns$ ipunosg i3

2iswt
1t - punojs
(118 poug ba (¢ feadsgd s
fsste retinuodworugs>ls 19=(g} 103
to = tpunogé)iw
g Aw
tsite tptonuéste 0etél 103

t1dayodwoagneanes « |siptonud ptous
tire .-3-; s Ustoduongnpansd) 3t

I URLZ 217]

1 {a3ustiodmopqneqne ¢) Aw

1{10olotdg’ it tvA101¢) eiusuodws t1e 108 « |1Uotiodwoaaqngame)ie
(sst¢ terusyodworséste 0et8) 233
10 - {ptoKudita
1{ptoyg) in
titg) i
rlgaudessct

I1t¢ st 1oolosdg st 1 alordg et 1~nintd netbrrp qng ‘te et ameag tng 1 alorl, atp
worwds Dutttery syentutie - 8 t/6.8\(B\a')/ ~= 1§
1780 a" eB\) 4\ 2\ o2 \IDB(D24,. /038

1§ « u3g uotsisag
raseds Foatttes) sienteers o8 F/geAlgNL I/ - 8
(78 104" 4B\ ¥\t E\UOtELBA /)20

"

! g - ...- e ¢ tearesg
| d ¢ ‘1ovsto;

e .\J Mtds - u:-co&luuA:-.
tt¢ « osuvi¢ sireodwodg
savvde BuIttvsy saviteita ¢ 8 /648N {BN D/ cw 1S
t/6te' oS\ a8\t \yu\sOR1tROduDD. /))t
{agy>) st 1yn
toandiay et e caade aen pinne, atp || tuure . ‘daniuedn

t{geAIn1p) Ant
1 {1dsttodmooaqne) kn

t {austodunsaned) e
1o = {s3veucdmootg) Am
t (u3¢) Aw

{33148 » 308(osdg Aw

{13149 = g Kt

} sjusuodmco”tre 3eB gqns
Rot3 e3tsodmoo {Attvjaueiod) v 3o siusuoduwsn Ajtsuept o3 suginoigne

L L L L T L L L L L L L LT LT LT

1
t {tvAleap) iz 0
towsig « {ss03umuodmomig] tvarese

! (ace) eso10
1

sselozd sus #% juswnBav puoses - ‘' §
Sumy KOT3 W3 St jueasBiv 18383 C ¢

1
11¢ su 30e(o1dg I3 .iowlozdg et 10e({o1d wwabwip Inq ‘{¢ ¢t wwwug 103 10elozd, syp
teowde Butryen -.!:..:o o Hee\(B\e‘)/ = 18
) {7806 om\) o9\ 1\ ew\200C034,/) 3¢
1
11§ = (U3givoyRIeAg
swowde Buttivey evutwrte g f/Qev\(s\s'}/ = t§
1 t/etet ...,..-,;.-,..3.!?\.2

4 P 4 . a 4 "
t - tesd)]
e

)t ¢
tté */'/ 1114s = 3uevodeosaney
:Q » |eamug)e37e0dwo0g
ssawde Buttiess esvurwiie p /gen\{8\e¢'}/ o= 1§
1 74 0e teB\) s w\ 1\ su\ JORIT00dmD, /) 3¢
| (cager)etyys
1.andut Jo3 4 usdo 10U Ptnon, etp |1 {.38>. ' Gme)vedo

Jutlotsteact, w (UZ§iBoteIeAd
ttppt . wmwug’ uppsl)etraIndiy w cu.
tSAD/80d buw Hewy.ett) v Ad peoetdes og t1ta Btul) ewwll B{t3 oY) SUtwIOiep

t {teAseap) Am

10 » (srvevoduosug) Aet
1 tuzg) ket

fagtge = aoe(oxdy »n
tagyus i J
| sjveusdunco 368 qne
not3 witeodwoo {Ariwrauviod) v 3o slusucdmos AJtivept 03 eugiInozqne ¢
CHPREUINUREPRRROORURBURERIREIRRIIEERIIOUENINIRENRRIRRNIRINIGRENNOII NI

10eloxd sya #3 jvewmBav puooes]
sumit #0t) ®U1 9% AuvewnBav 39233 -}

{ {puno3 g urnyex
t
|
|
t
:-ln
", =T ac!.otho Q:-osluu g Ite| dmoo$..-. 44 p
s = (s AnoJud) P teodmog | (peenipweatedi)st

Figure C.1: Example PERL Module (7 of 9).

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tt¢ su 13mlordg

IOURUIE O~ | FT Lo \MPI\ APEIINE LY PUEE Iru BinC), St
fauguge - § gt f.ver-nLioturgl ot jettaindut o dugusg
tougugg - | 3t (outg’ ex ot gandut - dugugg
138 texey s toutgiovsa)egrgandut « supugg
tisurg’ v hagtgandut o dutugg
187/8\je = DULE
1.t = t2e339gjAw
I e, 8 e (et A
1 - (ourg)Aw

BUNE IS (SLET (WAt IOl (7R T N A VR VI WY SV T TE I AN VAR T TR 1

tauguzs o

I8

t39130g swwNUivmg 02030Qs <« ¢

eNItoqes ‘L uivn_jreqer 388 o (susNyiIves)Aw

1tg = (swepitoyst}’iw

1,8 = t10330¢)in

!t § o (w30s0qiiy

B A A N A

[IF 2]

-

t(398Coadg

17 veeris

t lgaqtas) iz tue

1.\, = deeg

tqtgqugg deug sutig « suttg
fféemrlaa (1t g *\/ 3t ¢ . qtuge

L35 [IRRLY7AVANVE IR 1] U2
deIvE xeiftd putg 13U prrca, ety
gt) s 12Indute tuteuss) An
18/7¢e\/e o atug
tio Gaqtas « (q1af)iw

(gaqrag) stiun

fus = (deeg)iu

ELTe 2/ attde = {gaqiaelie

1.8 = {19139} An

bobtatetRoinntgay, o ¢ o« teuttdlAe

cAEPIEYIVg giv) g 1Ot)e
tqtgusg o | 3t Laatalen 8
XN

1t » xegatas tgg su 13efoxdg 3t .10

Mitesorotd vortta - 4 7 sl n) Ve rAudesdatiatg\n, 99 Tt
suovele Lhiittory wywitar(s 4 2780\l '), e T 8
.. ¢t stptandutg | euttindutd o ¢

f1grde o (stuttindutg) /e
wiojesijertndion ne

X3t diagesi) snsropdand my sutanodgee g

BOORDOROOREEBIIRNININIIRITRISIRERIRIVIIINNNY

pojivesagat 2 n1 OUTt e et ireurfre jetrp g

Litoasesgiuinang
ttanwieent
toLaenlondg £t ycalosd aviBwtp ng ‘1g et swwig tag prafurd, etp

tnavde Burprvry siwntwrta - g /g .e\{8\s')/ e t$
(VIR AV ANAW AR ELI 2T a F 1T

11 = Ut uvogeseas
asivede Butitosy miwitwite - 8 /P, 8\{8\e'}/f = T
(V2 ARSRT ASRUASRWC AU 1L 2 L7 WV R ¥ }]

114 = tvAISLS
R RN LI LI R R B F Y PL AN AV VAR 1)
178ts s\l as Nt s toquig. /)it
{caausi ot tyn
Podunt tog agg vade anu pres o wtp 1 ugs L ‘aad)liedo

«wede P

tntsten~t, w UPp UoteteA
Hlakpt tewetigf et dottaindut o Ug
1ot &1 111A S1USY sy B1t3 sUl whlule) A]

rearcga prre usey w1ty v An pe

toouey, « togetd
L)
t anvybuct, o feqelf
1. be sdhgtegvig)stege
touortivit, o teqeid
(asvw, be sdAgtequig) gt

tomvlig = [tWAINIS)AN

tigmgeig)Aet

tluz) An

130Cctd sy et juswnbiv pregs oy 113tys = 190fo1d$ Aw
sewi mo) Wi EL AMmumlay (aieeE g 133tys o ewviif A

tagtye » sdAlteants Au
toqet 4eb ghv

oty Arwvttetyong wavg eiuswsdtnboy sy setrd L1 attanssgne g

SORNEITUD NN ER ORI BRI SRR UERNIRIRR N BIR AN RRDIRIRRIIRRRERY

anp 3Ant my teqet e sdky et qtemnhte qxttp ¢ g

tlieAtsapitisthigot

t tagul seo1 s

ntde ke yan(otd Jetute 14 st teqvys 3oy adeln
R R I N R RPN ST U TN TR N T W XY [AP0)
(IR AV AV AVUARELI LRV A R R

t11g = Ulf Hotesead
Butttesy savittwits ccca 128\ {E\.')7 -w 18
[V IS AR AYAVUAUTEL RV WA F 3]

11¢ = |1 tvAImsg
11914 [YT YT AN AV A FART IR]
/781e0 ag\) as it erestuntestelyd. /i3t

vy Ayttwey @

it4 = (0 {vAsS2S
swiode bt givay waentarge g 1 e\ {B NS}/ ot}
7800 smA\) av At A sw \ouKtiivn. /) 38
{edan>)mtiyn
Chatag o, 'dadiuedo) gt

toantuinaud, o Usé USTEIBAL
tLopt L tequit L rprLtettaindut » (UI4)Aw
igansend pre utey ettty » A peavgdet st fith U] suelt wit) UL semregep R

ot teAleLE t.,. =D tvAle1 1iivAIRIg) AN

Figure C.1: Example PEXL Module (8 of 9).

(6]

ission.

ithout permi

hibited w

ion pro

f the copyright owner. Further reproduct

ISSIoNn O

Reproduced with perm

(XL LR E R R L)

LLLERLDEET VRN DAY A LR L R RN XL A R LA T e 2]

ta., VIMB2

tugé umnyaz
este
gt Lol vitis, yivdg uinaoey
(L wotvitas, yiedg) easixs) 3t

fapiye = (U3e)Aw
113t14e » (dA1g)Aw
attgindino qne
a1t andno U suett e} oeUtINoIgne
L O A T EE N L PN T A PR AR S R LT LAY LT DR LR RN ET LY

ugé uinies
sste

17 2-) gt T¢ uanzs:
t)z-v/2-¥/21
2T 1<) 3y T¢ uitie:
1780 Ll s, tieds « 7§
t{r-v/2-4/23
_ e =
t{7¢ 2-) 37 T¢ unia:
t/2-w/2-0/13
H7¢ 1) 31 T¢ umne2
¢ wtebvitie, Yivdg « ¢
t)2en/2-0/21
- tuze - ¢
t(T¢ 1=} 3t T¢ umyo:
tuger Lrgiviae, yiedd « ¢
(sstg? dh1g yrwdgstgloetd) 10
tizg)he
{1l dA3¢ yivdéiermtum) 3t

vitg ysed

=

IR E RN L ']

KRR RSIAA 2]

=

AR AL FL A t

=

CRERRIRLY

3¢ e 3t U3¢ uinien

t1giys = (U3¢)Am
t1gtge w {(dA1g)Aw
og13Induy ane
vttt ::-:q ue prty ey syt veIune b]
L Y L T T T Y TR N R LT T T DT N R LT DTV E L T P T)

tdaniet

t{og)acog2

{) sete |
frelusgivandg » (Urg)taedg
121P4 - 1§) 3wdg
telurg)taedg) ‘ui\U1g., = (Koxg)Aut
) taspé p-}3%
wwe tgoq Uo -lxo:u Xer @ 18//\/\\/® ~= 27D8§
179 ¢ wytepg g & /gn\/ = (x108)Ae
1780\ (\s*)/ 3% 14 = ¢
118 = 8
tAtqtenod) sotsoiositp etdtagne g) (/78(s'8\)em\o/} 33010 |
frelusgiyaedg = (upg)yavdg
135pg = ({UTEItIRdg L I\UTS.) Iwdg
Sy 1500 UO wexous Xei ' ‘'j B /I\N/\\/® ~= 33PDG
1tiurgIyIndg) sassae) 33 0 w» |UT)iiIvedg
tE2IPE Do 1) 31 L<\2tPE>\ A3010witp PILEAUT suiwvatoo <\utd>\. SIbNN
170t wItepgi T & Jen\/ = 33::.
t/8em\(8\a‘)/ 3% 18 = ¢
126 = ¢
116 = Uyg
} (76 Le m\) em\ 1\ Lam\} ' \y/) 3%
t (cometiyn
tuuw = {urg) R
t.andur fo03 ulg tedo 10U pinon, etp (| t.u3e>. ! oM)uedo
b tusk)3y

eodA3 et13 Jo uotywoot

L aoH. IANES) wamsxe 99 (U3 ®=i }) 31 eTTa0IE’ | L IHOHK | ANNE w UZE

Lt uzad2aexEL. | AKES) saetxe 93 (34 e-|)) 37 erraozd’ | MIQDA4EXIL.) AMRS = UZE
totracig = (uzf) K

t o20mdexel y = {(ettavag)iu

fal\u t 18 & /8en\(N\)/ = (witep$)Aut
tpudg =

loupwes ane
®1t3 bI' pews 'y
T T L T LTI T

{ {TeAlmag) Utnaex
fuu t T8 & T8 = treArmag)Aw

t{/1\nopusaByz)\utBeq\\/ ¥9 T8 31 wu w {LIvdurord, |ebexovgeeng
1¢/30au\\/ 917 “#) It J(\xe1zpdi\, = {.jesiediy.|eBeovgennt
t (/eosydetopntous\\/ 9% “#) 3T .(\xe13pd]l\. = {.x0TYde1B, |ebuxougoung
2 {71\ ew\TOOW 8\ | \ o\ 1AI8AUdwIBOFTQEA\\/ 99 $) 3t .. = | enrivde, |eBexovgenng
{) eotm |
toavsg w "
{
t (vorawayod) I3 sue
to = {"$le3yog
18/ /s\ /¢
t{ojuoramrtog = ¢
| (voyreItogietIyn
tieg' /' \Navrde .. _{uotawyop) Re
"¢ = {ervsg) X

axto DNV VAW F RPN SPT AW §ARTAN C1 N VA F VAN Y (R AW DEAVEAL S UNVE RS LI T 1)

{} este |

taoggeg’ (\u'DUIUZE ‘BUILE = ¢
t/¢txx) (xe) [231°\/ 3¥ .6 = ouzuse

Figure C.1: Example PERL Module (9 of 9).

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D Sample Java Module (GUI)
Figure D.1 lists one of the smaller TgXspec Java modules ‘DesignSpecificationEditFrame.java’. This listing

is intended to illustrate the coding design and style used in all such modules.

The TgXspec GUI contains are over 32,000 lines of Java over 85 modules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//Tizle: TeXspec : DesignSvecificationEdit

//Version: a.

//Caovrigat: Copvright (ci) 2
//Author: Steve Oli°
//Companv: Un.versitvy cf Mani:

//Descrioticn: Graohical i1aterface for TeXsoec CASE
packaae TeXspecGU;

imoort java.awt.”*;
import javar.swinc.*s
imoort fava.awt.event.*;

/.'

* Edit/Create a Desizn Specificat.

* fQauthor Stephen OlL1iv

* @versien 0.13, Mar 3., 2

*/

oudlic class DesignSpecificationEdit?®r: extend: JInternalFran

//f... rnstance var.akbl

.o
(underlving cane
7;ivateJPaneIeditPane.= new JPanel ;
LR 2
* lavout tor the uncerlvinag sar
L d
oéivateGridBaaLavou editPanellavotL = new GridBaglavou: :

/Q-r
* panel for ccmmen TeXssecCembonent cont
.
/
orivate TeXsoecComponentEditPar componentPane;

/'-

* panel for cesicn spec specific conte

]

private DesignSpecificationEditPal desiagnPane;

/o'
* panel for "SAVE" and "CANCEL" Bbutt
L4
7
private SaveCancelPane buttonPane = new SaveCancelPane: ;

/v'
* Cesign Svecification =c be ecited !oziglr
-
/
private DesiqnSpecificati. dsOl¢;

/'r"
* Designr Data Dicticnaryv Entrv to be edited (moc:
.
!
private DesignSpecificati. dsNes;

/0'

* data mecdel for table of desian so

s

private TeXspecComponentTableMoc dataMode. ;

/.~
* Used for grneratinag lavout canstral

.

s

private 1ot curRov = 0;

AN

-
Jave

- - - s e
egure sr.82 (& Ut &)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'/"

* Creates an instanc

@varam title che Strirg tc displav i1n the ticl
@naram resizable 1f trie, the frame can be re
@pnaram closable 1f true. the frame can be ¢

@uaram maximizable 1 f true, the frame can be max

@varam iconifiakble 1f true, the frame can be 1icc

@naram & desiqan Specification tc be e

@pvaram m dataModel for Jtable of specif:icaticns which mav be r
I3

puplic DesignSvecificationEditPri:Stranc title, boolear resizabl,
boolear closabl., boolea:r maximizabl, bcolear iconifiabl,
DesianSvecificati- d. TeXsoecComponentTableMoc m:

supe: title, resizabl, closabl, maximizabl, iconifiabl ;

L2 I 2 I B AN A

dsOlc = d;
dsNev = :DesignSvecificati: d.cooy H
dataMode. = m;

try
ibInit: -;
pack: -

catct Exceptio ex
ex.printStackTrac

/Q'

* Creates ar 1nstanc

.

* @oaram o design Ssecrication =c be e

* @oaram = dataModel :zcr Jtable of sp=citicaticas whizh mav be

*,
oublic DesianSpecificationEditFri-DesignSpnecificati. o,
TeXspecComponentTableMoc m.

this. "Desian Speciticatic, true Trué, TrIue€, TLrIue D, M7

-

/'.
* Creates an 1nstance. Used by JBuiider

.

-

’
public DesianSpecificationEditEr:.
this: "", true, true, true, true, null, aull ;s

/v—
* Initialyi:
N

.
‘

private veic ibInit: - throws Exceptia:

//... set un ccmmon TeXsctec component <«lemeants £cr e
componentPane = new TeXspecComponentEditPar dsNev. ;

//... set U2 desicn cata clctionary sgcecliic elements Ior €
designPane = new DesignSpecificationEditPardsNev. ;

//... set un the listeners for the "SAVE" & "CANCEL" b
buttonPane.getSaveButte: .addActionListene’
new javz.awt.event.ActionlListene:
opublic voic actionPerforme Acticniven e:
saveButton actionPerforne:;

:
buttonPane.getCancelButtc . .addActionListenc

gf:u\-. Rvamnle Tave Mnadwla {2 of 5)‘

b 53
IT sl ERINRSS 2AY=E

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public¢ voic actionPert

’

//... sSet up the zain var
getContentPar :.setLavou n

getContentPar:

getContentPar:

new javz.awt.event.ActionListene:

cancelButton actionPerforiie:;

getContentPar' '.ad¢:componentPane,
new GridBaaConstrain

.adc:designPane.
new Grid3agConstrain

.ad¢buttonPane,
new GridBaaConstraLin-

orme:ActionEven e

-
’

ew GridBaagLavou:

0, 0, // qrid pos x.
GridBacConstrain .REMAINDE,
// arid width. heiq

1.C, 0.C,

// weircht x.
GridBaaConstrain .EAST,
GridBagConstrain .HORIZONTA,
¢t/ ancher., £11
new Inset:'0, O,
/! Lnset
S5, 2

// cadx.

1,

0. 0,

vad

’

0, 1, // qrzd vos x,
GridBagConstrain .REMAINDE,
grid wiath, 2ergl

1.2, 1.€

J/ werght x,
GridBagConstrain .EAST,
GridBacConstrain .BOTE,
aachor, 1.
new [nset:. 0,
/t inset.

S, 2

// vadx,

1. /7

/

a. 0, 0.

sad

’

0, 2, // grxd pos x,
GridBacConstrain .REMAINDE.
agrid werdth, aeral

1.C. 0.¢

// werght Xx.
GridBacConstrain .EAST,
GridBacConstrain .HORIZONTA,

// anchorz. f£L1
new [nset: ¢, 0, 0, O .
/1 inset
5, 2
// cadxz. oad
H
/-
* Generate lavout constraints for most £.
* 2param width arid width <0 = end cf row., 7 = remainder
.
’
orivate GridBagConstrain lavout.int widtlh
returr lavoutiwidtl, GridBagConstrain .CENTEEL ;
/=«
* Generate lavout ccastral
L - T ~& RN

™%
L IgurS aveas

P Foroemr RMmcdonia £Q
P wilel -

Reproduced with permission of the copyright owner

S <y

80

. Further reproduction prohibited without permission.

-

- =

@param width
@param anchor

crid width (<0 end
see GridBagCcastra

of row. 2

vy
private GridBaqConstrain- lavoutrint widtk,
GridBagConstrain' retVal = null;

int anchor

1fiwidtl <= 0
Lf widthk==0 !
widttk = GridBaaConstrain .REMAINDE.:
else -
widtl = -widtlh;

retVal = new GridBaaConstrain’

remainder

GridBagConstrain .RELATIV, curRow+, // cric ©es x.
widtt, 1, // zric width.
heiaght
1.C, 0.¢C // weigat X.
anchoi, GridBaaCcnstrain .BOTE, // anchecr., f1rLl
new Inset: Q, 0, 0, 0., // Laset
0, 2 // madx, pad
else
retVal = new Gr:idBagConstrain
GridBagConstrain .RELATIV, curRot, // arid pos x.
widtt, 1, // arid width. heia
1.C, 9.C /! weicht x.
anchoil GridBagCenstrain .NONE, /7 anch z, Ei1
new Inset:. 0, 0, 0, O, /! Lnse
s, 'y dea. cag

.
’

returr retval;

/.0
Generate lavout csnstral

* dparam w.dth cer>.d width ¢d = and af row. J} = remainder

¢« @param anchor see GridBagCenstra

* @param €113 see GridBaqCenstra

<7

private GridBagConstrain lavoutiint widtt, int anchol 1nt £ill

GridBaagConstrain® retVal = null;
1£:wider <= 0)
1£: widtl==0
widthk = GridBacConstrain .REMAINDE;
' else
widtt = -width:
retVal = new GridBagConstrain-
GridBacConstrain .RELATIV., curRosw++, // =rid scs Xx.
widtl, 1L, // zric width,
he-cht
1.C, 0.1, !t/ weigat x.
anchos, £1ll, // anchor. rzesiz
colics
new Inset: Q. 0, 0, 0. // Lnset.
g, 2 // vacz, vad
else
retVal = new GridBagConstrain-
GridBagConstrain .RELATIV., curRos., // arid pcs x.
width, 1. /i agrid width. heia
0.1, 0.1, // weicht x.
ancho: £11ll, // anchor. res:z
Pigars D.L: Sxampls Javm Modals (‘ Cfn‘o)>

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

polics
new Inset:'0, 0, 0, O, // inset.
S, 2 // padx, cad

returr retvVaz;

/vﬂ'
¥ Respond to mouse-click cn the "SAVE" pushb

-
4
orivate volc saveButton actionPerforn.ActicnEven e:
componentPane.recordDat: .;
desianPane.recordDat :;
1f: dsOlc.qetName :.equal:idsNev.getName:
dsNev.copvTc:dsOlc ¢
try
dsOlc.write ;
buttonPane.getCancelButtc .setTexti"Exit";;

@param e avent from ¢

catclt TeXspecExceptic ex
ExceptionDialc dla = new ExceptionDialc.Confiquratio.
getDefaultFran. ,"Teiscec,true TeXspecExceptic.errzolr,
"Could not save Des_gnDI+" ‘'~ex.descriptio 7
Dimensio dlasSize = dlc.getPreferredSiz 7
Dimensio frmSize = getSize
Point loc = getlLocatio 7
dla.setLocatio frmSizewidtl - dlagSiz.widtl /7 2 + loc.x.
frmSize.height - dlgSize.height: / 2 + loc.v:;
dla.show ;

else
tcy
dsNev.write '
buttonPane.qgetCancelButtc .setTextt"Exit";;

if: dataMode != null dataMode.addComponen dsNewvw.; //...
update Jtabl

catcl’ TeXspecExceptic ex
ExceptionDialc dlag = new ExceptionDialc Confiquratio.
getDefaultFranr ,"TeXscec.true TeXspecExceptic.error,
"Could not create naw DesignD+" “+ex.descriptio:
Dimensio: dlagSize = dlc.getPreferredsSi:: ;
Dimensio. frmSize = getSize
Point loc = gqetlLocatio: 7
dlg.setLocatioc: frmSizewidtt - dlasSizewidtl: / 2 + loc.x.
frmSiz«.heiqght ~ dlgSize.heigqhtt / 2 + loc.v:;
dla.show:

/-~
* Hespond tc mouse-click cn the "CANCEL" ousht

-

-/

vrivate voic cancelButton actionPerforrActicnEven e
dispose . ;

3param e event Zrom :

Figure D.i: Exampie Java Mioduie (3 of 3).

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E Installation

€.1 Prerequisite Software

TgXspec relies on a number of tools which are available without charge and can be downloaded from various
Internet sites. These tools can be installed on various computing platforms. Each of these tools must be
installed on a system before TEXspec can be installed. TEXspec should operate on any platform where each
of these tools has been installed.

E.1l.1 Ped

The main TgXspec processing is performed by modules which have been implemented in PERL [28]. Perl
Version 5 was used to develop TEXspec, and earlier versions are unlikely to be compatible.

E.1.2 TgX and ETEX

Various distributions of TEX and ETEX exist for many platforms. TgXspec has been tested on the TeTEX
and MIikTEX distributions, but should be compatible with any other valid distribution.

Some distributions do not contain the xy-pic package which provides drawing capabilities that TgXspec
uses to produce Data Flow Diagrams and Structure Charts. or the vmargin package, which TgXspec uses
to control margins. If the selected distribution does not include either of these packages, then the missing
package(s) must be downloaded and installed within the TEX installation. Installation of extension packages
is detailed in documentation of the TEX distribution.

E.1.3 Noweb

Noweb is a combination of executable programs and a ITEX extension package. Detailed installation in-
structions are provided for various platforms with the Noweb distribution.

Microsoft Windows-NT users should be aware of the incompatibility of Windows-NT with the Noweb dis-

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tribution binaries (executable images) for other Microsoft Windows systems. Instructions are included with
the Noweb distribution for building NT binaries.

E.1.4 JAVA Runtime Environment

Users wishing to run the Graphical User Interface must install a Java Runtime Environment that inciudes
the "Swing” libraries. TEXspec has been tested on Sun Microsystem’s JRE version 1.2 and 1.3, but TEXspec
should be compatible with any Swing enabled environment.

E.2 TgXspec Specific Installation

The TEXspec distibution includes:

e A number of Perl scripts. If TEXspec is to be run from the command line, then some platforms prefer
these to be placed in a particular location. If the GUI is to be used, then the scripts can be placed
anywhere provided that the GUI search list is updated to look in that location.

e GUI "batch” files. For each Perl script, a file is required to interface between the GUI and Perl.
The TrXspec distribution includes samples for Microsoft Windows environments. These files are only
required if the GUI is to be used, and can be placed anywhere provided that the GUI search list is
updated to look in that [ocation.

o A Java ARchive (.jar) file containing the executable GUL This can be placed anywhere, provided that

the Java Runtime Environment can access it.

o A class (.cls) file for each publishable product. These must be placed in the IXTEX installation. Instal-
lation of new class files is detailed in documentation of the TEX distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

{I] Advanced Software Technologies Graphical Designer. http://www.advancedsw.com
(2] J.J. Bunn. Floppy and Flow User Manual http://vscrna.cern.ch/floppy/contents.html, 1997.
[3] Cadre Technologies, Providence RI. Teamwork.

[4] Canadian Standards Association. Quality Assurance of Analytical, Scientific, and Design Computer
Programs for Nuclear Power Plants. Technical Report N286.7-99, 1999. 178 Rexdale Blvd. Etobicoke,
Ontario, Canada MOW 1R3.

[5] T. DeMarco. Structured Analysis and System Specification. Yourdon Press/Prentice-Hall, 1978.
(6] Digital Equipment Corporation, Maynard Massachusetts. Guide to DECdesign. 1992.
[7] R. Eckstein, D. Wood. and M. Loy. Java Swing. O'Reilly & Associates Inc., 1998.

[8] B.W. Goodwin, T.H. Andres, D.C. Donahue, W.C. Hajas, S.B. Keeling, C.I. Kitson, D.M. LeNeveu,
T.W. Melnyk, S.E. Oliver, J.G. Szekely, A.G. Wikjord, K. Witzke, and L. Wojciechowski. The Disposal
of Canada’s Nuclear Fuel Waste: A Study of Postclosure Safety of [n-room Emplacement of Used
CANDU PFuel in Copper Containers in Permeable Plutonic Rock. Volume 5: Radiological Assessment.
Technical Report AECL-11494-5,C0G-95-552-5, Atomic Energy of Canada Ltd, 1996.

(9] B.W. Goodwin, D.B. McConnell, T.H. Andres, W.C. Hajas, D.M. LeNeveu, T.W. Melnyk, G.R. Sher-
man, M.E. Stephens, J.G. Szekely, P.C. Bera, C.M. Cosgrove, K.D. Dougan, S.B. Keeling, C.I. Kit-
son, B.C. Kummen, S.E. Oliver, K. Witzke, L. Wojciechowski, and A.G. Wikjord. The Disposal of
Canada’s Nuclear Fuel Waste: Postclosure Assessment of a Reference System. Technical Report AECL-
10717,COG-93-7, Atomic Energy of Canada Ltd, 1994.

(10] EMM. Gurari. TgX™ and BTEX: Drawing and Literate Programming. McGraw-Hill, 1994.
[11] Interactive Development Environments, San Francisco, CA. Software Through Pictures. 1992.
{12] D.E. Knuth. Literate Programming. Center for the Study of Language and Information, 1992.

(13] L. Lamport. BTEX: A Document Preparation System. Addison-Wesicy. Reading Massachusetts USA,
1986.

(14] J.W. Leis. ATgXcad - ¢ Drawing Package for BTgX2e. Communications of the TeX User Group Vol. 21
No. 1, 2000. http://www.ceng.dcu.ie/ csg/latex/latexcad.html

[15] D.M. LeNeveu. Analysis Specifications for the CC3 Vault Model. Technical Report AECL-10970,COG-
94-100, Atomic Energy of Canada Ltd, 1994.
85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.advancedsw.com
http://vscrna.cern.ch/floppy/contents.html
http://www.eeng.dcu.ie/

[16] T.W. Melnyk. INROC Theory Manual Technical Report (unassigned), Ontario Power Generation,
2000. in draft.

[17] S. Oliver. Computer Program Abstract - INROC 01. Technical Report 06819-03787.1-T10, Ontario

Power Generation, 1999.

[18] S. Oliver, K. Dougan, K. Kersch, C. Kitson, G. Sherman, and L. Wojciechowski. Unit Testing - o
Component of Verification of Scientific Modelling Software. In T.I. Oren and G.B. Birta, editors, 1995
Summer Computer Simulation Conference, pages 978-983. The Society for Computer Simulation, 1995.

[19] M. Page-Jones. The Practical Guide to Structured Systems Design. Yourdon Press, 1980.

(20} R. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 4th edition, 1996.
[21] N. Ramsey. Literate Programming Simplified. [EEE Software, September 1994.

[22] J. Robbins. ArgoUML Object Oriented Design Tool. 2001.

[23] K. Rose. Very High Level 2-Dimensional Graphics. TeX User Group Conference 1997. http://www.ens-
lyon.fr/ krisrose/Xy-pic.html

[24] I. Sommerville. Software Engineering. Addison-Wesley, 6th edition, 2000.

[25] W.R. Stevens. UNIX Network Programming, Volume I: Networking APIs - Sockets and XTI. Prentice-
Hall, 1997.

[26] W.R. Stevens. UNIX Network Programming, Volume 2: Interprocess Communications. Prentice-Hall,
1998.

[27] P.D. Stotts. Tools Review: ‘Software Through Pictures’ from [DE. Journal of Visual Languages and
Computing, 4 p201-204, 1993.

[28] L. Wall, T. Christiansen, and R. Schwartz. Programming Perl. O'Reilly & Associates, 101 Morris Street,
Sebastopol, CA 95472, second edition, 1989.

[29] R.J. Wieringa. Requirements Engineering: Frameworks for Understanding. Wiley, 1996.

[30] E. Yourdon. Modern Structured Analysis. Yourdon Press/Prentice-Hall, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ens-

Glossary

AECL Atomic Energy of Canada Ltd

API Application Program Interface A set of routines, protocols, and tools for building software applications.
An API facilitates program development by providing pre-defined components.

ASCII American Standard Code for Information Interchange A code for representing English characters
as numbers, with each letter assigned a number from 0 to 127.

CASE Computer Aided Software Engineering A category of software that provides a development envi-
ronment for software programming. CASE systems offer tools to automate, manage and simplify the

development process.

CERN European Laboratory for Particle Physics European Organization for Nuclear Research, the world’s
largest particle physics centre.

CNSC Canadian Nuclear Safety Commission Regulator of nuclear energy and materials in Canada.

configuration management system A system to identify and manage change, keeping a record for his-

torical reference.

CP/M Control Program for Microprocessors Created by Digital Research Corporation, CP/M was one of
the first operating systems for personal computers.

CSA Canadian Standards Association A not-for-profit, nonstatutory, voluntary membership association

engaged in standards development and certification activities.

Symbolic Debugger A program used to find defects (bugs) in other programs. A debugger allows a
programmer to stop a program at a specified point and examine and change the values of variables.

DFD Data Flow Diagram A high level abstraction of software requirements showing conceptual processes
and the flow of data between them.

DGRTP Deep Geologic Repository Technology Program
Design Specification The specification for a single compilable module.
FSF The Free Software Foundation

GUI Gruphical User Interface Pronounced goo-ee. A program interface that takes advantage of the com-
puter’s graphics capabilities to make the program easier to use. Well-designed graphical user interfaces

nan fonn tha venn fonmm | 3 I A lane
SO JTT QT QIS IS JAILLng v id

-3

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISO International Organization for Standardization Derived from the greek word iso, which means equal.
Founded in 1946, ISO is an international organization composed of national standards bodies from

over 75 countries.

Java A general purpose, high-level programming language developed by Sun Microsystems. Java is an

object-oriented language similar to C++, but simplified to eliminate language features that cause

common programming errors. Java source code files are compiled into a format called bytecode, which

can then be executed by a Java interpreter. Compiled Java code can run on most computers because

Java interpreters and runtime environments, known as Java Virtual Machines (VMs), exist for most
‘ operating systems, including UNIX, the Macintosh OS, and Windows. Bytecode can also be converted
‘ directly into machine language instructions by a ‘just-in-time’ compiler.

KTEX A typesetting system based on the TEXprogramming language developed by Donald E. Knuth. Most
people who use TEXutilize a macro package that provides an easier interface. IXTEX, originally written
by Leslie Lamport, is one of the most popular. ¥IEXprovides higher-level macros, which makes it
easier to format documents but sacrifices some of the flexibility of TEX.

Macintosh A popular model of personal computer made by Apple Computer, featuring a graphical user

interface to make it relatively easy for novices to use the computer productively.

MathType An interactive tool for Windows and Macintosh from Design Science Inc that assists in the
creation of mathematical notation for word processing, and for TEX& #TEXand MathML documents

Mini-spec Process Specification The description of what is happening in a bottom level, primitive bubble
in a dataflow diagram.

MS-DOS MicroSoft Disk Operating System Originally developed by Microsoft for [BM, MS-DOS was the
standard operating system for [BM-compatible personal computers

MS-Win Microsoft Windows A family of operating systems for personal computers owned by Microsoft
Inc.

N288.7 CSA Standard for the Quality Assurance of Analytical, Scientific, and Design Computer Programs
3 for Nuclear Power Plants.

OO Object Oriented A special type of programming that combines data structures with functions to create

re-usable objects.

OPG Ontario Power Generation A company owned by the Government of Ontario which operates the
majority of Canadian nuclear reactors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PC Personal Computer The first personal computer produced by IBM was called the PC, and increasingly
the term PC came to mean [BM or [BM-compatible personal computers, to the exclusion of other

types of personal computers, such as Macintoshes.

PERL Pruactical Ertraction and Report Language A programming language developed by Larry Wall,
especially designed for processing text. Perl is an interpretive language, which makes it easy to build
and test simple programs.

Structure Chart An abstraction of software design showing software modules, usually as a tree, and the
flow of data between them.

search list A list of directories to be searched sequentially for a file of a given name. The occurance of the
file at a higher level in the list effectively superceeds files of the same name in directories lower in the
list.

SGML Standard Generalized Markup Language A system for organizing and tagging elements of a doc-
ument. SGML was developed and standardized by the ISO in 1986. SGML itself does not specify
any particular formatting; rather, it specifies the rules for tagging elements. These tags can then be

interpreted to format elements in different ways.

TCM Toolkit for Conceptual Modeling R.J. Wieringas’ collection of software tools to present conceptual
models of software systems in the form of diagrams, tables, trees, and the like.

TRADE Toolkit for Requirements And Design Engineering R.J. Wieringas’ Toolkit for Requirements And
Design Engineering.

UNIX Pronounced yoo-niks. A popular multi-user, multitasking operating system developed at Bell Labs
in the early 1970s.

W3C World Wide Web Consortium An international consortium of companies involved with the Internet
and the Web.

XML Extensible Markup Language A specification developed by the W3C. XML is a pared-down version
of SGML, designed especially for Web documents. It allows designers to create their own customized
tags, enabling the definition, transmission, validation, and interpretation of data between applications
and between organizations.

X-Windows A windowing and graphics system developed at the Massachusetts Institute of Technology.
Almost all UNIX graphical interfaces are based on X-Window.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Index

AECL, 1,4, 12,27
API, 50
ArgoUML, 6, 54

CASE, 2-6

CERN, 28

Chunk, 27, 28, 30-32, 34, 47, 57, 64

Class File, 12, 53, 54

CNSC, 1, 5, 53

Code Chunk, 27

Condition, 15, 16, 32, 64

Configuration File, 11, 39, 40, 54
Configuration Management, 11, 12, 37, 54
Consistency, 2-5, 8, 19, 20, 24, 25, 28, 29, 34, 35
Control Flow, 23

CSA, 1,2, 4,5, 37,53

Data Dictionary, 3, 4, 6, 11, 14-18, 21, 25, 27, 28,
30, 32, 34, 4045, 47, 55, 64

Data Flow Diagram, 2, 3, 5, 8, 15, 20-25, 34, 40,
43, 45, 46, 54, 55

DecDesign, 2

Design Specification, 3, 6, 8, 11-13, 15, 17, 27-32,
34-36, 47, 48, 51, 57-64

DGRTP, 1, 45

European Laboratory for Particle Physics, 28

Floppy, 10, 28, 51
FSF, 39, 54

Graphical Designer, 2
GUL 9, 14, 38

INROC, 2
Java, 6, 14, 38, 50, 33, 54, 78-83

LaTeX, 6, 9, 10, 12-14, 16-21, 25, 28, 35, 37, 42,
51, 53, 54, 57, 63, 64
Literate Programming, 6, 12, 27, 28

Mini-Spec, 25
Mini-spec, 2, 3, 8, 11, 17, 20, 24-26, 34, 4345, 55
MS-windows, 6

Noweb, 6, 10, 13, 27, 28, 32, 47, 51-33, 37, 63
OPG, 1

PERL, 13, 14, 27, 28, 38, 50, 51, 53, 54, 69-77
Pastcondition, 15, 16, 30, 32, 47, 64
Precondition, 15, 16, 30, 32, 47, 64

Process Specification, 25

Search List, L1, 39
Structure Chart, 2, 3, 8, 11, 15, 27-30, 34-37, 49,
M

TCM, 5
TRADE, 5

UNIX, 5
Version of Components, 12, 57
Windows, 6

X-windows, 5
XML, 54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xypic, 6, 22

Yourdon, 2, 8, 13, 20, 23, 45

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

